• Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111 , D05109. doi:10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., P. Uotila, and N. Nicholls, 2009: The influence of sea surface temperature variability on global temperature and precipitation extremes. J. Geophys. Res., 114 , D18116. doi:10.1029/2009JD012301.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321 , 14811484.

  • Arblaster, J. M., G. A. Meehl, and A. Moore, 2002: Interdecadal modulation of Australian rainfall. Climate Dyn., 18 , 519531.

  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17 , 31093124.

    • Search Google Scholar
    • Export Citation
  • Frich, P., L. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. M. G. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19 , 193212.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., T. D. Kell, and P. D. Jones, 2006: Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett., 33 , L23704. doi:10.1029/2006/GL027721.

    • Search Google Scholar
    • Export Citation
  • Groisman, P., R. Knight, D. R. Easterling, T. R. Karl, G. Hegerl, and Vy N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18 , 13261350.

    • Search Google Scholar
    • Export Citation
  • Haylock, M., and C. M. Goodess, 2004: Interannual variability of European extreme winter rainfall and links with mean large-scale circulation. Int. J. Climatol., 24 , 749776.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and J. M. Wallace, 2002: Influence of patterns of climate variability on the difference between satellite and surface temperature trends. J. Climate, 15 , 24122428.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., F. Zwiers, S. Kharin, and P. Stott, 2004: Detectability of anthropogenic changes in temperature and precipitation extremes. J. Climate, 17 , 36833700.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and H. van Loon, 1997: Decadel variations in climate associated with the North Atlantic Oscillation. Climatic Change, 36 , 301326.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climate Significance and Environmental Impact, J. W. Hurrell et al., Eds., Amer. Geophys. Union, 1–36.

    • Search Google Scholar
    • Export Citation
  • Kenyon, J., and G. C. Hegerl, 2008: Influence of modes of climate variability on global temperature extremes. J. Climate, 21 , 38723889.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78 , 10691079.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., N. J. Holbrook, and S. B. Power, 2007: Interdecadal sea surface temperature variability in the equatorial Pacific Ocean. Part I: The role of off-equatorial wind stresses and oceanic Rossby waves. J. Climate, 20 , 26432658.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., N. J. Holbrook, and S. B. Power, 2008: Interdecadal sea surface temperature variability in the equatorial Pacific Ocean. Part II: The role of equatorial–off-equatorial wind stresses in a hybrid coupled model. J. Climate, 21 , 42424256.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and A. Hu, 2006: Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. J. Climate, 19 , 16051623.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Tebaldi, H. Teng, and T. C. Peterson, 2007: Current and future U.S. weather extremes and El Niño. Geophys. Res. Lett., 34 , L20704. doi:10.1029/2007GL031027.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and M. J. Manton, 2008: Monitoring changes in climate extremes. Bull. Amer. Meteor. Soc., 89 , 12661271.

  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Interdecadal modulation of the impact of ENSO on Australia. Climate Dyn., 15 , 319324.

    • Search Google Scholar
    • Export Citation
  • Power, S., M. Haylock, R. Colman, and X. Wang, 2006: The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J. Climate, 19 , 47554771.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110 , 354384.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and J. M. Wallace, 1983: Meteorological aspects of the El Niño/Southern Oscillation. Science, 222 , 11951202. doi:10.1126/science.222.4629.1195.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114 , 23522362.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., C. K. Folland, L. V. Alexander, A. Moberg, and J. D. Knight, 2008: European climate extremes and the North Atlantic Oscillation. J. Climate, 21 , 7283.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., D. L. Jackson, V. Ramaswamy, M. D. Schwarzkopf, and X. Huang, 2005: The radiative signature of upper tropospheric moistening. Science, 310 , 841. doi:10.1126/science.1115602.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere Annular Mode. Science, 293 , 8589.

  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13 , 10181036.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmospheric–oceanic variations in the Pacific. Climate Dyn., 9 , 303319.

  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317 , 233. doi:10.1126/science.1140746.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. Wang, F. W. Zwiers, and P. Ya Groisman, 2010: The influence of large-scale climate variability on winter maximum daily precipitation over North America. J. Climate, 23 , 29022915.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 12
PDF Downloads 12 12 12

Influence of Modes of Climate Variability on Global Precipitation Extremes

View More View Less
  • 1 Nicholas School for the Environment and Earth Sciences, Duke University, Durham, North Carolina
  • | 2 School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom
Restricted access

Abstract

The probability of climate extremes is strongly affected by atmospheric circulation. This study quantifies the worldwide influence of three major modes of circulation on station-based indices of intense precipitation: the El Niño–Southern Oscillation, the Pacific interdecadal variability as characterized by the North Pacific index (NPI), and the North Atlantic Oscillation–Northern Annular Mode. The study examines which stations show a statistically significant (5%) difference between the positive and negative phases of a circulation regime. Results show distinct regional patterns of response to all these modes of climate variability; however, precipitation extremes are most substantially affected by the El Niño–Southern Oscillation. The effects of the El Niño–Southern Oscillation are seen throughout the world, including in India, Africa, South America, the Pacific Rim, North America, and, weakly, Europe. The North Atlantic Oscillation has a strong, continent-wide effect on Eurasia and affects a small, but not negligible, percentage of stations across the Northern Hemispheric midlatitudes. This percentage increases slightly if the Northern Annular Mode index is used rather than the NAO index. In that case, a region of increase in intense precipitation can also be found in Southeast Asia. The NPI influence on precipitation extremes is similar to the response to El Niño, and strongest in landmasses adjacent to the Pacific. Consistently, indices of more rare precipitation events show a weaker response to circulation than indices of moderate extremes; the results are quite similar, but of opposite sign, for negative anomalies of the circulation indices.

Corresponding author address: Gabriele C. Hegerl, School of GeoSciences, Grant Institute, The University of Edinburgh, The King’s Buildings, West Mains Road, Edinburgh EH9 3JW, United Kingdom. Email: gabi.hegerl@ed.ac.uk

Abstract

The probability of climate extremes is strongly affected by atmospheric circulation. This study quantifies the worldwide influence of three major modes of circulation on station-based indices of intense precipitation: the El Niño–Southern Oscillation, the Pacific interdecadal variability as characterized by the North Pacific index (NPI), and the North Atlantic Oscillation–Northern Annular Mode. The study examines which stations show a statistically significant (5%) difference between the positive and negative phases of a circulation regime. Results show distinct regional patterns of response to all these modes of climate variability; however, precipitation extremes are most substantially affected by the El Niño–Southern Oscillation. The effects of the El Niño–Southern Oscillation are seen throughout the world, including in India, Africa, South America, the Pacific Rim, North America, and, weakly, Europe. The North Atlantic Oscillation has a strong, continent-wide effect on Eurasia and affects a small, but not negligible, percentage of stations across the Northern Hemispheric midlatitudes. This percentage increases slightly if the Northern Annular Mode index is used rather than the NAO index. In that case, a region of increase in intense precipitation can also be found in Southeast Asia. The NPI influence on precipitation extremes is similar to the response to El Niño, and strongest in landmasses adjacent to the Pacific. Consistently, indices of more rare precipitation events show a weaker response to circulation than indices of moderate extremes; the results are quite similar, but of opposite sign, for negative anomalies of the circulation indices.

Corresponding author address: Gabriele C. Hegerl, School of GeoSciences, Grant Institute, The University of Edinburgh, The King’s Buildings, West Mains Road, Edinburgh EH9 3JW, United Kingdom. Email: gabi.hegerl@ed.ac.uk

Save