• Aoki, T., H. Motoyoshi, Y. Kodama, T. J. Yasunari, K. Sugiura, and H. Kobayashi, 2006: Atmospheric aerosol deposition on snow surfaces and its effect on albedo. Sci. Online Lett. Atmos., 2 , 1316. doi:10.2151/sola.2006-004.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and C. S. Konor, 1996: Vertical differencing of the primitive equations based on the Charney–Phillips grid in hybrid σp vertical coordinates. Mon. Wea. Rev., 124 , 511528.

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65 , 11701185.

  • Bestsen, M., G. Evensen, H. Drange, and A. D. Jenkins, 1999: Coordinate transformation on a sphere using conformal mapping. Mon. Wea. Rev., 127 , 27332740.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., and W. H. Lipscomb, 1999: An energy-conserving thermodynamic model of sea ice. J. Geophys. Res., 104 , 1566915677.

  • Bitz, C. M., M. M. Holland, A. J. Weaver, and M. Eby, 2001: Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res., 106 , 24412463.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J. L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32 , L20806. doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bougamont, M., J. L. Bamber, and W. Greuell, 2005: A surface mass balance model for the Greenland Ice Sheet. J. Geophys. Res., 110 , F04018. doi:10.1029/2005JF000348.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1984: Accelerating the convergence to equilibrium of ocean–climate models. J. Phys. Oceanogr., 14 , 666673.

  • Caldwell, P., and C. S. Bretherton, 2009: Response of a subtropical stratocumulus-capped mixed layer to climate and aerosol changes. J. Climate, 22 , 2038.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using simple ocean data assimilation. Mon. Wea. Rev., 136 , 29993017.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2010: A cumulus parameterization with state-dependent entrainment rate. Part II: Impact on climatology in a general circulation model. J. Atmos. Sci., 67 , 21942211.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., and M. Sugiyama, 2010: A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles. J. Atmos. Sci., 67 , 21712193.

    • Search Google Scholar
    • Export Citation
  • Emori, S., A. Hasegawa, T. Suzuki, and K. Dairaku, 2005: Validation, parameterization dependence and future projection of daily precipitation simulated with a high-resolution atmospheric GCM. Geophys. Res. Lett., 3 , L06708. doi:10.1029/2004GL022306.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25 , 463474.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., S. G. Yeager, R. B. Neale, S. Levis, and D. A. Bailey, 2009: Improvements in a half degree atmosphere/land version of the CCSM. Climate Dyn., 34 , 819833. doi:10.1007/s00382-009-0614-8.

    • Search Google Scholar
    • Export Citation
  • Goldewijk, K. K., G. van Drecht, and A. F. Bouwman, 2007: Mapping contemporary global cropland and grassland distributions on a 5 × 5 minute resolution. J. Land Use Sci., 2 , 167190.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., 2001: Estimation of entrainment rate in simple models of convective clouds. Quart. J. Roy. Meteor. Soc., 127 , 5372.

  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31 , L03205. doi:10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., P. Branconnot, F-F. Jin, S. T. Kim, M. Kolasinski, T. Li, and I. Musat, 2009a: Atmospheric feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J. Climate, 22 , 56985718.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. van Oldenborgh, and T. Stockdale, 2009b: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90 , 325340.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., G. A. Riggs, and V. V. Salomonson, 2006: MODIS/Terra snow cover 8-day L3 global 0.05deg CMG, version 5. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/mod10c2v5.html].

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., 2006: CCSR Ocean Component Model (COCO), version 4.0. Center for Climate System Research Rep. 25, 103 pp. [Available online at http://www.ccsr.u-tokyo.ac.jp/;hasumi/COCO/coco4.pdf].

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., and S. Emori, 2004: K-1 coupled model (MIROC) description. K-1 Tech. Rep., 34 pp. [Available online at http://www.ccsr.u-tokyo.ac.jp/~agcmadm/].

    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., and Coauthors, 2009: Harmonisation of global land-use scenarios for the period 1500–2100 for IPCC-AR5. iLEAPS Newsletter, No. 7, iLEAPS International Project Office, Helsinki, Finland, 6–8.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., M. Kimoto, K. Sakamoto, and S. Iwasaki, 2006: Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J. Oceanogr., 62 , 155170.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., T. J. Osborn, K. R. Briffa, C. K. Folland, E. B. Horton, L. V. Alexander, D. E. Parker, and N. A. Rayner, 2001: Adjusting for sampling density in grid box land and ocean surface temperature time series. J. Geophys. Res., 106 , 33713380.

    • Search Google Scholar
    • Export Citation
  • Jung, T., S. K. Gulev, I. Rudeva, and V. Soloviv, 2006: Sensitivity of extratropical cyclone characteristics to horizontal resolution in the ECMWF model. Quart. J. Roy. Meteor. Soc., 132 , 18391857.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78 , 197208.

  • Knutti, R., and G. Hegerl, 2008: The equilibrium sensitivity of the earth’s temperature to radiation changes. Nat. Geosci., 1 , 735743.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, J. C. McWilliams, P. R. Gent, and F. O. Bryan, 2001: Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr., 31 , 518536.

    • Search Google Scholar
    • Export Citation
  • Lean, J., G. Rottman, J. Harder, and G. Kopp, 2005: SORCE contributions to new understanding of global change and solar variability. Sol. Phys., 230 , 2753.

    • Search Google Scholar
    • Export Citation
  • Le Treut, H., and Z. X. Li, 1991: Sensitivity of an atmospheric general circulation model to prescribed SST changes: Feedback effects associated with the simulation of cloud optical properties. Climate Dyn., 5 , 175187.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, S-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 13 , 22932307.

  • Lipscomb, W. H., 2001: Remapping the thickness distribution in sea ice models. J. Geophys. Res., 106 , 1398914000.

  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22 , 748766.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88 , 13831394.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31 , 17911806.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Nakamura, T., T. Awaji, T. Hatayama, K. Akitomo, and T. Takizawa, 2000: Tidal exchange through the Kuril Straits. J. Phys. Oceanogr., 30 , 16221644.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., 2001: Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteor., 99 , 349378.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112 , 131.

    • Search Google Scholar
    • Export Citation
  • Nakano, H., and N. Suginohara, 2002: Effects of bottom boundary layer parameterization on reproducing deep and bottom waters in a world ocean model. J. Phys. Oceanogr., 32 , 12091227.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., and H-J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104 , 1562115634.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., Y. J. Kang, T. Matsuura, and S. Iizuka, 2005: Effect of the Prandtl number in the parameterization of vertical mixing in an OGCM of the tropical Pacific. Geophys. Res. Lett., 32 , L23609. doi:10.1029/2005GL024540.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., M. Takahashi, T. Nakajima, and A. Sumi, 1997: Description of CCSR/NIES atmospheric general circulation model. National Institute for Environmental Studies, Center for Global Environmental Research Supercomputer Monograph Rep. 3, 1–48.

    • Search Google Scholar
    • Export Citation
  • Ogura, T., S. Emori, M. J. Webb, Y. Tsushima, T. Yokohata, A. Abe-Ouchi, and M. Kimoto, 2008: Towards understanding cloud response in atmospheric GCMs: The use of tendency diagnostics. J. Meteor. Soc. Japan, 86 , 6979.

    • Search Google Scholar
    • Export Citation
  • Oki, T., Y. Agata, S. Kanae, T. Saruhashi, and K. Musiake, 2003: Global water resources assessment under climatic change in 2050 using TRIP. Water Resources Systems—Water Availability and Global Change. IAHS Publ. 280, IAHS, 124–133.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84 , 259276.

    • Search Google Scholar
    • Export Citation
  • Pan, D. M., and D. A. Randall, 1998: A cumulus parameterization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124 , 949981.

  • Pope, V. D., and R. A. Stratton, 2002: The processes governing horizontal resolution sensitivity in a climate model. Climate Dyn., 19 , 211236.

    • Search Google Scholar
    • Export Citation
  • Prather, M. J., 1986: Numerical advection by conservation of second-order moments. J. Geophys. Res., 91 , 66716681.

  • Ramankutty, N., and J. A. Foley, 1999: Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles, 13 , 9971027.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89 , 303311.

  • Richter, I., and S-P. Xie, 2008: On the origin of equatorial Atlantic biases in coupled general circulation models. Climate Dyn., 31 , 587598.

    • Search Google Scholar
    • Export Citation
  • Röske, F., 2001: An atlas of surface fluxes based on the ECMWF reanalysis—A climatological dataset to force global ocean general circulation models. Max-Planck-Institut für Meteorologie Rep. 323, 31 pp.

    • Search Google Scholar
    • Export Citation
  • Sakamoto, T. T., A. Sumi, S. Emori, T. Nishimura, H. Hasumi, T. Suzuki, and M. Kimoto, 2004: Far-reaching effects of the Hawaiian Islands in the CCSR/NIES/FRCGC high-resolution climate model. Geophys. Res. Lett., 31 , L17212. doi:10.1029/2004GL020907.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2009: Incorporating model quality information in climate change detection and attribution studies. Proc. Natl. Acad. Sci. USA, 106 , 1477814783.

    • Search Google Scholar
    • Export Citation
  • Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack, 1993: Stratospheric aerosol optical depth, 1850-1990. J. Geophys. Res., 98 , 2298722994.

    • Search Google Scholar
    • Export Citation
  • Sekiguchi, M., and T. Nakajima, 2008: A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J. Quant. Spectrosc. Radiat. Transfer, 109 , 27792793.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., and R. M. Chervin, 1992: Ocean general circulation from a global eddy-resolving model. J. Geophys. Res., 97 , 54935550.

    • Search Google Scholar
    • Export Citation
  • Shabanov, N. V., and Coauthors, 2005: Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf forests. IEEE Trans. Geosci. Remote Sens., 43 , 18551865.

    • Search Google Scholar
    • Export Citation
  • Shaffrey, L. C., and Coauthors, 2009: U.K. HiGEM: The new U.K. high-resolution global environmental model—Model description and basic evaluation. J. Climate, 22 , 18611896.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14 , 20792087.

    • Search Google Scholar
    • Export Citation
  • Still, C. J., J. A. Berry, G. J. Collatz, and R. S. DeFries, 2003: Global distribution of C3 and C4 vegetation: Carbon cycle implications. Global Biogeochem. Cycles, 17 , 1006. doi:10.1029/2001GB001807.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., A. J. Weaver, and M. Edy, 2004: A method for obtaining pre-twentieth century initial conditions for use in climate change studies. Climate Dyn., 23 , 327339.

    • Search Google Scholar
    • Export Citation
  • Sudo, K., M. Takahashi, J. Kurokawa, and H. Akimoto, 2002: CHASER: A global chemical model of the troposphere 1. Model description. J. Geophys. Res., 107 , 4339. doi:10.1029/2001JD001113.

    • Search Google Scholar
    • Export Citation
  • Takata, K., S. Emori, and T. Watanabe, 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38 , 209222.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res., 110 , D02202. doi:10.1029/2004JD005029.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., M. Egashira, K. Matsuzawa, H. Ichijo, R. O’ishi, and A. Abe-Ouchi, 2009: A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum. Atmos. Chem. Phys., 9 , 30613073.

    • Search Google Scholar
    • Export Citation
  • Tally, L., 1993: Distribution and formation of North Pacific Intermediate Water. J. Phys. Oceanogr., 23 , 517537.

  • Thorndike, A. S., D. S. Rothrock, G. A. Maykut, and R. Colony, 1975: The thickness distribution of sea ice. J. Geophys. Res., 80 , 45014513.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34 , 357400.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33 , L12704. doi:10.1029/2006GL026894.

    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., and Coauthors, 2006: Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multi-model study. Climate Dyn., 27 , 113126. doi:10.1007/s00382-006-0127-7.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Waliser, D. E., and Coauthors, 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114 , D00A21. doi:10.1029/2008JD010015.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., S. Emori, M. Satoh, and H. Miura, 2009: A PDF-based hybrid prognostic cloud scheme for general circulation models. Climate Dyn., 33 , 795816. doi:10.1007/s00382-008-0489-0.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., M. Chikira, Y. Imada, and M. Kimoto, 2011: Convective control of ENSO simulated in MIROC. J. Climate, in press.

  • Watanabe, S., H. Miura, M. Sekiguchi, T. Nagashima, K. Sudo, S. Emori, and M. Kawamiya, 2008: Development of an atmospheric general circulation model for integrated earth system modeling on the Earth Simulator. J. Earth Simul., 9 , 2835.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Williams, P. D., 2009: A proposed modification to the Robert–Asselin time filter. Mon. Wea. Rev., 137 , 25382546.

  • Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office unified model. Quart. J. Roy. Meteor. Soc., 125 , 16071636.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., 1993: Cumulus ensemble simulation. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 221–235.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., T. Oki, and S. Kanae, 2009: Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map. Hydrol. Earth Syst. Sci., 13 , 22412251.

    • Search Google Scholar
    • Export Citation
  • Yang, Z-L., R. E. Dickinson, A. Robock, and K. Ya Vinnikov, 1997: Validation of the snow submodel of the biosphere–atmosphere transfer scheme with Russian snow cover and meteorological observational data. J. Climate, 10 , 353373.

    • Search Google Scholar
    • Export Citation
  • Yasuda, I., 1997: The origin of the North Pacific Intermediate Water. J. Geophys. Res., 102 , 893909.

  • Yokohata, T., M. J. Webb, M. Collins, K. Williams, M. Yoshimori, J. Hargreaves, and J. D. Annan, 2010: Structural similarities and differences in climate responses to CO2 increase between two perturbed physics ensembles. J. Climate, 23 , 13921410.

    • Search Google Scholar
    • Export Citation
  • Yoshida, R., H. Okamoto, Y. Hagihara, and H. Ishimoto, 2010: Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio. J. Geophys. Res., 115 , D00H32. doi:10.1029/2009JD012334.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109 , D19105. doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 126 126
PDF Downloads 92 92 92

Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity

View More View Less
  • * Center for Climate System Research, The University of Tokyo, Kashiwa, Japan
  • | + Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
  • | # National Institute for Environmental Studies, Tsukuba, Japan
  • | @ Kyushu University, Fukuoka, Japan
  • | & Tokyo University of Marine Science and Technology, Tokyo, Japan
  • | ** Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
Restricted access

Abstract

A new version of the atmosphere–ocean general circulation model cooperatively produced by the Japanese research community, known as the Model for Interdisciplinary Research on Climate (MIROC), has recently been developed. A century-long control experiment was performed using the new version (MIROC5) with the standard resolution of the T85 atmosphere and 1° ocean models. The climatological mean state and variability are then compared with observations and those in a previous version (MIROC3.2) with two different resolutions (medres, hires), coarser and finer than the resolution of MIROC5.

A few aspects of the mean fields in MIROC5 are similar to or slightly worse than MIROC3.2, but otherwise the climatological features are considerably better. In particular, improvements are found in precipitation, zonal mean atmospheric fields, equatorial ocean subsurface fields, and the simulation of El Niño–Southern Oscillation. The difference between MIROC5 and the previous model is larger than that between the two MIROC3.2 versions, indicating a greater effect of updating parameterization schemes on the model climate than increasing the model resolution. The mean cloud property obtained from the sophisticated prognostic schemes in MIROC5 shows good agreement with satellite measurements. MIROC5 reveals an equilibrium climate sensitivity of 2.6 K, which is lower than that in MIROC3.2 by 1 K. This is probably due to the negative feedback of low clouds to the increasing concentration of CO2, which is opposite to that in MIROC3.2.

Corresponding author address: M. Watanabe, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan. Email: hiro@aori.u-tokyo.ac.jp

Abstract

A new version of the atmosphere–ocean general circulation model cooperatively produced by the Japanese research community, known as the Model for Interdisciplinary Research on Climate (MIROC), has recently been developed. A century-long control experiment was performed using the new version (MIROC5) with the standard resolution of the T85 atmosphere and 1° ocean models. The climatological mean state and variability are then compared with observations and those in a previous version (MIROC3.2) with two different resolutions (medres, hires), coarser and finer than the resolution of MIROC5.

A few aspects of the mean fields in MIROC5 are similar to or slightly worse than MIROC3.2, but otherwise the climatological features are considerably better. In particular, improvements are found in precipitation, zonal mean atmospheric fields, equatorial ocean subsurface fields, and the simulation of El Niño–Southern Oscillation. The difference between MIROC5 and the previous model is larger than that between the two MIROC3.2 versions, indicating a greater effect of updating parameterization schemes on the model climate than increasing the model resolution. The mean cloud property obtained from the sophisticated prognostic schemes in MIROC5 shows good agreement with satellite measurements. MIROC5 reveals an equilibrium climate sensitivity of 2.6 K, which is lower than that in MIROC3.2 by 1 K. This is probably due to the negative feedback of low clouds to the increasing concentration of CO2, which is opposite to that in MIROC3.2.

Corresponding author address: M. Watanabe, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan. Email: hiro@aori.u-tokyo.ac.jp

Save