• Barstad, I., A. Sorteberg, F. Flatoy, and M. Déqué, 2009: Precipitation, temperature and wind in Norway: Dynamical downscaling of ERA40. Climate Dyn., 33 , 769776.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and K. A. Emanuel, 2001: A parameterization of the cloudiness associated with cumulus convection: Evaluation using TOGA COARE data. J. Atmos. Sci., 58 , 31583183.

    • Search Google Scholar
    • Export Citation
  • Chen, H., T. Zhou, R. B. Neale, X. Wu, and G. J. Zhang, 2010: Performance of the new NCAR CAM3.5 model in East Asian summer monsoon simulations: Sensitivity to modifications of the convection scheme. J. Climate, 23 , 36573675.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1994: The summer monsoon in East Asia. Monsoons over China, Y. Ding Ed., Atmospheric Sciences Library Series, Vol. 16, Kluwer Academic Publishers, 1–90.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48 , 23132335.

  • Feng, J., and C. Fu, 2006: Inter-comparison of 10-year precipitation simulated by several RCMs for Asia. Adv. Atmos. Sci., 23 , 531542.

    • Search Google Scholar
    • Export Citation
  • Fox-Rabinovitz, M., L. L. Takacs, R. C. Govindaraju, and M. J. Suarez, 2001: A variable-resolution stretched-grid general circulation model: Regional climate simulation. Mon. Wea. Rev., 129 , 453469.

    • Search Google Scholar
    • Export Citation
  • Fox-Rabinovitz, M., J. Côté, B. Dugas, M. Déqué, and J. L. McGregor, 2006: Variable resolution general circulation models: Stretched-grid model intercomparison project (SGMIP). J. Geophys. Res., 111 , D16104. doi:10.1029/2005JD006520.

    • Search Google Scholar
    • Export Citation
  • Fu, C., and Coauthors, 2005: Regional Climate Model Intercomparison Project for Asia. Bull. Amer. Meteor. Soc., 86 , 257266.

  • Gao, X., Z. Zhao, Y. Ding, R. Huang, and F. Giorgi, 2001: Climate change due to greenhouse effects in China as simulated by a regional climate mode. Adv. Atmos. Sci., 18 , 12241230.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Z. Zhao, and F. Giorgi, 2002: Changes of extreme events in regional climate simulations over East Asia. Adv. Atmos. Sci., 19 , 927942.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Y. Xu, Z. Zhao, J. S. Pal, and F. Giorgi, 2006: On the role of resolution and topography in the simulation of East Asia precipitation. Theor. Appl. Meteor., 86 , 173185.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Y. Shi, R. Song, F. Giorgi, Y. Wang, and D. Zhang, 2008: Reduction of future monsoon precipitation over China: Comparison between a high resolution RCM simulation and the driving GCM. Meteor. Atmos. Phys., 99 , 7386.

    • Search Google Scholar
    • Export Citation
  • Gibelin, A. L., and M. Déqué, 2003: Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Climate Dyn., 20 , 327339.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and L. O. Mearns, 1999: Introduction to special section: Regional climate modeling revisited. J. Geophys. Res., 104 , 63356352.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., X. Bi, and J. S. Pal, 2004: Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Present-day climate (1961–1990). Climate Dyn., 22 , 733756.

    • Search Google Scholar
    • Export Citation
  • Goubanova, K., and L. Li, 2007: Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Global Planet. Change, 57 , 2742.

    • Search Google Scholar
    • Export Citation
  • Han, J., and R. Zhang, 2009: The dipole mode of the summer rainfall over East China during 1958-2001. Adv. Atmos. Sci., 26 , 727735.

  • Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27 , 787813.

    • Search Google Scholar
    • Export Citation
  • Hu, Z-Z., S. Yang, and R. Wu, 2003: Long-term climate variations in China and global warming signals. J. Geophys. Res., 108 , 4614. doi:10.1029/2003jd003651.

    • Search Google Scholar
    • Export Citation
  • Huang, R., J. Chen, G. Huang, and Q. Zhang, 2006: The quasi-biennial oscillation of summer monsoon rainfall in China and its cause (in Chinese). Chin. J. Atmos. Sci., 30 , 545560.

    • Search Google Scholar
    • Export Citation
  • Kang, I-S., and Coauthors, 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dyn., 19 , 383395.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., and Coauthors, 2005: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles, 19 , GB1015. doi:10.1029/2003GB002199.

    • Search Google Scholar
    • Export Citation
  • Lee, D. K., and M. S. Suh, 2000: Ten-year Asian summer monsoon simulation using a regional climate model (RegCM2). J. Geophys. Res., 105 , 2956529577.

    • Search Google Scholar
    • Export Citation
  • Le Treut, H., and Z. X. Li, 1991: Sensitivity of an atmospheric general circulation model to prescribed SST changes: Feedback effects associated with the simulation of cloud optical properties. Climate Dyn., 5 , 175187.

    • Search Google Scholar
    • Export Citation
  • Le Treut, H., Z. X. Li, and M. Forichon, 1994: Sensitivity of the LMD general circulation model to greenhouse forcing associated with two different cloud water parameterizations. J. Climate, 7 , 18271841.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., L. O. Mearns, F. Giorgi, and R. L. Wilby, 2003: Regional climate research—Needs and opportunities. Bull. Amer. Meteor. Soc., 84 , 8995.

    • Search Google Scholar
    • Export Citation
  • Li, H., A. Dai, T. Zhou, and J. Lu, 2010: Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950-2000. Climate Dyn., 34 , 501514.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and Y. Ding, 2005: Multi-year simulation of the East Asian monsoon and precipitation in China using a regional climate model and evaluation. Acta Meteor. Sin., 19 , 302316.

    • Search Google Scholar
    • Export Citation
  • Li, T., P. Liu, X. Fu, B. Wang, and G. A. Meehl, 2006: Spatiotemporal structures and mechanisms of the tropospheric biennial oscillation in the Indo-Pacific warm ocean regions. J. Climate, 19 , 30703087.

    • Search Google Scholar
    • Export Citation
  • Li, Z. X., 1999: Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J. Climate, 12 , 9861001.

  • Liang, X-Z., L. Li, A. Dai, and K. E. Kunkel, 2004a: Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys. Res. Lett., 31 , L24208. doi:10.1029/2004GL021054.

    • Search Google Scholar
    • Export Citation
  • Liang, X-Z., L. Li, K. E. Kunkel, M. Ting, and J. X. L. Wang, 2004b: Regional climate model simulation of U.S. precipitation during 1982–2002. Part I: Annual cycle. J. Climate, 17 , 35103529.

    • Search Google Scholar
    • Export Citation
  • Liang, X-Z., M. Xu, K. E. Kunkel, G. A. Grell, and J. S. Kain, 2007: Regional climate model simulation of U.S.–Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations. J. Climate, 20 , 52015207.

    • Search Google Scholar
    • Export Citation
  • Lin, C. A., L. Wen, G. Lu, Z. Wu, J. Zhang, Y. Yang, Y. Zhu, and L. Tong, 2006: Atmospheric-hydrological modeling of severe precipitation and floods in the Huaihe River basin, China. J. Hydrol., 330 , 249259.

    • Search Google Scholar
    • Export Citation
  • Qian, Y., and L. R. Leung, 2007: A long-term regional simulation and observations of the hydroclimate in China. J. Geophys. Res., 112 , D14104. doi:10.1029/2006JD008134.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. J. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19 , 446469.

    • Search Google Scholar
    • Export Citation
  • Shi, H., R. Yu, J. Li, and T. Zhou, 2009: Development of a regional climate model (CREM) and evaluation on its simulation of summer climate over eastern China. J. Meteor. Soc. Japan, 87 , 381401.

    • Search Google Scholar
    • Export Citation
  • Tao, S., and L-X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Wang, Y., L. R. Leung, J. L. McGregor, D-K. Lee, W-C. Wang, Y. Ding, and F. Kimura, 2004: Regional climate modeling: Progress, challenges, and prospects. J. Meteor. Soc. Japan, 82 , 15991628.

    • Search Google Scholar
    • Export Citation
  • Wu, B., and T. Zhou, 2008: Oceanic origin of the interannual and interdecadal variability of the summertime western Pacific subtropical high. Geophys. Res. Lett., 35 , L13701. doi:10.1029/2008GL034584.

    • Search Google Scholar
    • Export Citation
  • Yu, R., W. Li, X. Zhang, Y. Liu, Y. Yu, H. Liu, and T. Zhou, 2000: Climatic features related to eastern China summer rainfalls in the NCAR CCM3. Adv. Atmos. Sci., 17 , 503518.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z-G., 1999: Summertime Floods and Droughts in China and the Associated Circulations (in Chinese). China Meteorological Press, 297 pp.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Z. Li, 2002: Simulation of the East Asian summer monsoon using a variable resolution atmospheric GCM. Climate Dyn., 19 , 167180.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and R. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110 , D08104. doi:10.1029/2004JD005413.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and R. Yu, 2006: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19 , 58435858.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., R. Yu, H. Li, and B. Wang, 2008a: Ocean forcing to changes in global monsoon precipitation over the recent half-century. J. Climate, 21 , 38333852.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., L. Zhang, and H. Li, 2008b: Changes in global land monsoon area and total rainfall accumulation over the last half century. Geophys. Res. Lett., 35 , L16707. doi:10.1029/2008GL034881.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., B. Wu, and B. Wang, 2009a: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian–Australian monsoon? J. Climate, 22 , 11591173.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Coauthors, 2009b: The CLIVAR C20C Project: Which components of the Asian–Australian monsoon circulation variations are forced and reproducible? Climate Dyn., 33 , 10511068.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Coauthors, 2009c: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22 , 21992215.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., and X-Z. Liang, 2005: Regional climate model simulation of U.S. soil temperature and moisture during 1982–2002. J. Geophys. Res., 110 , D24110. doi:10.1029/2005JD006472.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., and X-Z. Liang, 2007: Regional climate model simulations of U.S. precipitation and surface air temperature during 1982–2002: Interannual variation. J. Climate, 20 , 218232.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 1 1 1

East China Summer Rainfall Variability of 1958–2000: Dynamical Downscaling with a Variable-Resolution AGCM

View More View Less
  • 1 LASG, Institute of Atmospheric Physics, and Graduate University, Chinese Academy of Sciences, Beijing, China
  • | 2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 3 Laboratoire de Météorologie Dynamique, IPSL/CNRS, UPMC, Paris, France, and National Climate Center, China Meteorological Administration, Beijing, China
  • | 4 LASG, Institute of Atmospheric Physics, and Graduate University, Chinese Academy of Sciences, Beijing, China
Restricted access

Abstract

A variable-grid atmospheric general circulation model, namely, Laboratoire de Météorologie Dynamique-zoom, version 4 (LMDz4), with a local zoom over eastern China, is driven by 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data and is used as a downscaling tool of summer rainfall variability for the period 1958–2000. During the integration, the model temperature and wind were nudged to the ERA-40 data through a relaxation procedure. The performance of the LMDz4 in simulating the regional rainfall features is thoroughly assessed through a comparison to both rain gauge data and the reanalysis product. The dynamical downscaling improves not only the climatology of the monsoon major rainband but also the interannual variability modes of rainfall over eastern China in comparison with that of the ERA-40 data. The added values of LMDz4 are evident in both the spatial patterns of dominant rainfall variability modes and the associated temporal variations. A comparison of rainfall averaged over several typical regions shows improvement as a better-matched variability and a reduced root-mean-square error, except for the region over the lower reaches of the Yellow River valley, where the model shows bias because of the northward shift of the monsoon rainband. This rainband shift is caused by the stronger low-level southerlies and the lower specific humidity over southern China. The stronger southwestern wind transports excessive water vapor northward, and the underestimation of specific humidity implies that air masses need to go farther north to reach condensation. Both favor a northward shift of the major rainband. The analysis demonstrates that a variable-resolution AGCM can be a useful tool for the dynamical downscaling of rainfall variability over eastern China, although the rainband bias remains evident as with many other regional climate models.

Corresponding author address: Dr. Tianjun Zhou, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. Email: zhoutj@lasg.iap.ac.cn

Abstract

A variable-grid atmospheric general circulation model, namely, Laboratoire de Météorologie Dynamique-zoom, version 4 (LMDz4), with a local zoom over eastern China, is driven by 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data and is used as a downscaling tool of summer rainfall variability for the period 1958–2000. During the integration, the model temperature and wind were nudged to the ERA-40 data through a relaxation procedure. The performance of the LMDz4 in simulating the regional rainfall features is thoroughly assessed through a comparison to both rain gauge data and the reanalysis product. The dynamical downscaling improves not only the climatology of the monsoon major rainband but also the interannual variability modes of rainfall over eastern China in comparison with that of the ERA-40 data. The added values of LMDz4 are evident in both the spatial patterns of dominant rainfall variability modes and the associated temporal variations. A comparison of rainfall averaged over several typical regions shows improvement as a better-matched variability and a reduced root-mean-square error, except for the region over the lower reaches of the Yellow River valley, where the model shows bias because of the northward shift of the monsoon rainband. This rainband shift is caused by the stronger low-level southerlies and the lower specific humidity over southern China. The stronger southwestern wind transports excessive water vapor northward, and the underestimation of specific humidity implies that air masses need to go farther north to reach condensation. Both favor a northward shift of the major rainband. The analysis demonstrates that a variable-resolution AGCM can be a useful tool for the dynamical downscaling of rainfall variability over eastern China, although the rainband bias remains evident as with many other regional climate models.

Corresponding author address: Dr. Tianjun Zhou, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. Email: zhoutj@lasg.iap.ac.cn

Save