• Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50 , 20382053.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2001: GCM and observational diagnoses of the seasonal and interannual variations of the Pacific storm track during the cool season. J. Atmos. Sci., 58 , 17841800.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., , and I. Orlanski, 1994: On energy flux and group velocity of waves in baroclinic flows. J. Atmos. Sci., 51 , 38233828.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., , S. Lee, , and K. Swanson, 2002: Storm track dynamics. J. Climate, 15 , 21632183.

  • Charney, J. G., 1947: The dynamics of long waves in baroclinic westerly current. J. Meteor., 4 , 135162.

  • Deng, Y., , and M. Mak, 2006: Nature of the differences in the intraseasonal variability of the Pacific and Atlantic storm tracks: A diagnostic study. J. Atmos. Sci., 63 , 26022615.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 , 3352.

  • Eliassen, A., , and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22 , 123.

  • Harnik, N., , and E. K. M. Chang, 2004: The effects of variations in jet width on the growth of baroclinic waves: Implications for midwinter Pacific storm track variability. J. Atmos. Sci., 61 , 2340.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., , R. Seager, , M. Visbeck, , N. Naik, , and K. Rogers, 2001: Impact of the midlatitude storm track on the upper Pacific Ocean. J. Phys. Oceanogr., 31 , 616636.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , M. Ting, , and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15 , 21252144.

  • Hoskins, B. J., , and P. J. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci., 47 , 18541864.

  • Hoskins, B. J., , M. E. McIntyre, , and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kushner, P. J., , and I. M. Held, 1998: A test, using atmospheric data, of a method for estimating oceanic eddy diffusivity. Geophys. Res. Lett., 25 , 42134216.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y-O., , and C. Deser, 2007: North Pacific decadal variability in the Community Climate System Model version 2. J. Climate, 20 , 24162433.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45 , 27182743.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., , and K. M. Lau, 1984: The structure and energetics of midlatitude disturbances accompanying cold air outbreaks over East Asia. Mon. Wea. Rev., 112 , 13091327.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., , and M. J. Nath, 1994: A modeling study of the relative roles of the tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system. J. Climate, 7 , 11841207.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37 , 16481654.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7 , 157167.

  • Miller, A. J., , D. R. Cayan, , T. P. Barnett, , N. E. Graham, , and J. M. Oberhuber, 1994: Interdecadal variability of the Pacific Ocean: Model response to observed heat flux and wind stress anomalies. Climate Dyn., 9 , 287302.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49 , 16291641.

  • Nakamura, H., , and T. Sampe, 2002: Trapping of synoptic-scale disturbances into the North Pacific subtropical jet core in midwinter. Geophys. Res. Lett., 29 , 1761. doi:10.1029/2002GL015535.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., , and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17 , 18281844.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., , G. Lin, , and T. Yamagata, 1997: Decadal climate variability in the North Pacific during the recent decades. Bull. Amer. Meteor. Soc., 78 , 22152225.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., , T. Sampe, , Y. Tanimoto, , and A. Shimpo, 2004: Observed associations among storm tracks, jet streams, and midlatitude oceanic fronts. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–345.

    • Search Google Scholar
    • Export Citation
  • Nakamura, M., 1994: Characteristics of potential vorticity mixing by breaking Rossby waves in the vicinity of a jet. Sc.D. thesis, Massachusetts Institute of Technology, 253 pp.

  • Nakamura, M., , and S. Yamane, 2009: Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part I: North Atlantic basin. J. Climate, 22 , 880904.

    • Search Google Scholar
    • Export Citation
  • Nakamura, M., , M. Kadota, , and S. Yamane, 2010: Quasigeostrophic transient wave activity flux: Updated climatology and its role in polar vortex anomalies. J. Atmos. Sci., 67 , 31643189.

    • Search Google Scholar
    • Export Citation
  • Niehaus, M. C. W., 1980: Instability of non-zonal baroclinic flows. J. Atmos. Sci., 37 , 14471463.

  • Nitta, T., , and S. Yamada, 1989: Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J. Meteor. Soc. Japan, 67 , 375382.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • Panetta, R. L., , I. M. Held, , and R. T. Pierrehumbert, 1987: External Rossby waves in the two-layer model. J. Atmos. Sci., 44 , 29242933.

    • Search Google Scholar
    • Export Citation
  • Park, S., , C. Deser, , and M. A. Alexander, 2005: Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans. J. Climate, 18 , 45824599.

    • Search Google Scholar
    • Export Citation
  • Pfeffer, R. L., 1987: Comparison of conventional and transformed Eulerian diagnostics in the troposphere. Quart. J. Roy. Meteor. Soc., 113 , 237254.

    • Search Google Scholar
    • Export Citation
  • Pfeffer, R. L., 1992: A study of eddy-induced fluctuations of the zonal-mean wind using conventional and transformed Eulerian diagnostics. J. Atmos. Sci., 49 , 10361050.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1986: Three-dimensional propagation of transient quasi-geostrophic eddies and its relationship with the eddy forcing of the time-mean flow. J. Atmos. Sci., 43 , 16571678.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2003: Kuroshio Extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback. J. Phys. Oceanogr., 33 , 24652482.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , Y. Kushnir, , N. H. Naik, , M. A. Cane, , and J. Miller, 2001: Wind-driven shifts in the latitude of the Kuroshio–Oyashio Extension and generation of SST anomalies on decadal timescales. J. Climate, 14 , 42494265.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., , P. J. Kushner, , and I. M. Held, 1997: Dynamics of barotropic storm tracks. J. Atmos. Sci., 54 , 791810.

  • Taguchi, B., , H. Nakamura, , M. Nonaka, , and S-P. Xie, 2009: Influences of the Kuroshio/Oyashio Extensions on air–sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J. Climate, 22 , 65366560.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Waugh, D. W., , R. A. Plumb, , and L. M. Polvani, 1994: Nonlinear, barotropic response to a localized topographic forcing: Formation of a “tropical surf zone” and its effect on interhemispheric propagation. J. Atmos. Sci., 51 , 14011416.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 49 49 6
PDF Downloads 43 43 9

Dominant Anomaly Patterns in the Near-Surface Baroclinicity and Accompanying Anomalies in the Atmosphere and Oceans. Part II: North Pacific Basin

View More View Less
  • 1 Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan
© Get Permissions
Restricted access

Abstract

Variability in the monthly-mean flow and storm track in the North Pacific basin is examined with a focus on the near-surface baroclinicity. Dominant patterns of anomalous near-surface baroclinicity found from empirical orthogonal function (EOF) analyses generally show mixed patterns of shift and changes in the strength of near-surface baroclinicity. Composited anomalies in the monthly-mean wind at various pressure levels based on the signals in the EOFs show accompanying anomalies in the mean flow up to 50 hPa in the winter and up to 100 hPa in other seasons. Anomalous eddy fields accompanying the anomalous near-surface baroclinicity patterns exhibit, broadly speaking, structures anticipated from simple linear theories of baroclinic instability, and suggest a tendency for anomalous wave fluxes to accelerate–decelerate the surface westerly accordingly. However, the relationship between anomalous eddy fields and anomalous near-surface baroclinicity in the midwinter is not consistent with the simple linear baroclinic instability theories. Composited anomalous sea surface temperature (SST) accompanying anomalous near-surface baroclinicity often exhibits moderate values and large spatial scales in the basin, rather than large values concentrated near the oceanic fronts. In the midsummer and in some cases in cold months, however, large SST anomalies are found around the Kuroshio–Oyashio Extensions. Accompanying anomalies in the net surface heat flux, SST in the preceding and following months, and meridional eddy heat flux in the lower troposphere suggest active roles played by the ocean in generating the concomitant anomalous large-scale atmospheric state in some of these cases.

* Current affiliation: Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan

Corresponding author address: Mototaka Nakamura, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. Email: moto@jamstec.go.jp

This article included in the CLIVAR - Western Boundary Currents special collection.

Abstract

Variability in the monthly-mean flow and storm track in the North Pacific basin is examined with a focus on the near-surface baroclinicity. Dominant patterns of anomalous near-surface baroclinicity found from empirical orthogonal function (EOF) analyses generally show mixed patterns of shift and changes in the strength of near-surface baroclinicity. Composited anomalies in the monthly-mean wind at various pressure levels based on the signals in the EOFs show accompanying anomalies in the mean flow up to 50 hPa in the winter and up to 100 hPa in other seasons. Anomalous eddy fields accompanying the anomalous near-surface baroclinicity patterns exhibit, broadly speaking, structures anticipated from simple linear theories of baroclinic instability, and suggest a tendency for anomalous wave fluxes to accelerate–decelerate the surface westerly accordingly. However, the relationship between anomalous eddy fields and anomalous near-surface baroclinicity in the midwinter is not consistent with the simple linear baroclinic instability theories. Composited anomalous sea surface temperature (SST) accompanying anomalous near-surface baroclinicity often exhibits moderate values and large spatial scales in the basin, rather than large values concentrated near the oceanic fronts. In the midsummer and in some cases in cold months, however, large SST anomalies are found around the Kuroshio–Oyashio Extensions. Accompanying anomalies in the net surface heat flux, SST in the preceding and following months, and meridional eddy heat flux in the lower troposphere suggest active roles played by the ocean in generating the concomitant anomalous large-scale atmospheric state in some of these cases.

* Current affiliation: Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan

Corresponding author address: Mototaka Nakamura, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. Email: moto@jamstec.go.jp

This article included in the CLIVAR - Western Boundary Currents special collection.

Save