• Alexander, L. V., , and J. M. Arblaster, 2009: Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int. J. Climatol., 29 , 417435.

    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111 , D05109. doi:10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Berrisford, P., , D. P. Dee, , K. Fielding, , M. Fuentes, , P. Kållberg, , S. Kobayashi, , and S. M. Uppala, 2009: The ERA-Interim archive. ECMWF Rep. Series, No. 1, Reading, United Kingdom, 16 pp. [Available online at www.ecmwf.int/publications].

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., , J. Chen, , F. R. Robertson, , and R. F. Adler, 2008: Evaluation of global precipitation in reanalyses. J. Appl. Meteor. Climatol., 47 , 22792299.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , K. E. Trenberth, , and T. R. Karl, 1999: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12 , 24512473.

    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., 2004: Seasonal march of the East-Asian summer monsoon. East Asian Monsoon, C. P. Chang, Ed., World Scientific, 3–53.

  • Fu, C., , Z. Jiang, , Z. Guan, , J. He, , and Z. Xu, 2008: Climate extremes and related disasters in China. Regional Climate Studies of China, C. Fu et al., Eds., Springer, 313–344.

    • Search Google Scholar
    • Export Citation
  • Gong, D. Y., , Y. Z. Pan, , and J. A. Wang, 2004: Changes in extreme daily mean temperatures in summer in eastern China during 1955–2000. Theor. Appl. Climatol., 77 , 2537.

    • Search Google Scholar
    • Export Citation
  • Gong, D. Y., , D. Guo, , and C. H. Ho, 2006: Weekend effect in diurnal temperature range in China: Opposite signals between winter and summer. J. Geophys. Res., 111 , D18113. doi:10.1029/2006JD007068.

    • Search Google Scholar
    • Export Citation
  • Griffiths, G. M., and Coauthors, 2005: Change in mean temperature as a predictor of extreme temperature change in the Asia–Pacific region. Int. J. Climatol., 25 , 13011330.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., , R. E. Dickinson, , and W. L. Chameides, 2006: Impact of aerosol indirect effect on surface temperature over East Asia. Proc. Natl. Acad. Sci. USA, 103 , 43714376.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., , D. H. Lister, , and Q. Li, 2008: Urbanization effects in large-scale temperature records, with an emphasis on China. J. Geophys. Res., 113 , D16122. doi:10.1029/2008JD009916.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., , W. Ebisuzaki, , J. Woolen, , S-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., , F. W. Zwiers, , and X. Zhang, 2005: Intercomparison of near-surface temperature and precipitation extremes in AMIP-2 simulations, reanalyses, and observations. J. Climate, 18 , 52015223.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Li, H. B., , A. Robock, , S. Liu, , X. G. Mo, , and P. Viterbo, 2005: Evaluation of reanalysis soil moisture simulations using updated Chinese soil moisture observations. J. Hydrometeor., 6 , 180193.

    • Search Google Scholar
    • Export Citation
  • Li, Q., , X. Liu, , H. Zhang, , T. C. Peterson, , and D. R. Easterling, 2004: Detecting and adjusting temporal inhomogeneity in Chinese mean surface air temperature data. Adv. Atmos. Sci., 21 , 260268.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and Coauthors, 2006: China homogenized historical temperature datasets (1951–2004). Version 1.0. Climate Data Center, National Meteorological Information Center, Beijing, China, 65 pp.

    • Search Google Scholar
    • Export Citation
  • Li, Q., , W. Li, , P. Si, , G. Xiaorong, , W. Dong, , P. Jones, , J. Huang, , and L. Cao, 2009a: Assessment of surface air warming in northeast China, with emphasis on the impacts of urbanization. Theor. Appl. Climatol., 99 , 469478. doi:10.1007/s00704-009-0155-4.

    • Search Google Scholar
    • Export Citation
  • Li, Q., , H. Zhang, , J. Chen, , W. Li, , X. Liu, , and P. D. Jones, 2009b: A mainland China homogenized historical temperature dataset of 1951–2004. Bull. Amer. Meteor. Soc., 90 , 10621065.

    • Search Google Scholar
    • Export Citation
  • Liu, X., , Z. Yin, , X. Shao, , and N. Qin, 2006: Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003. J. Geophys. Res., 111 , D19109. doi:10.1029/2005JD006915.

    • Search Google Scholar
    • Export Citation
  • Ma, L., , T. Zhang, , Q. Li, , O. W. Frauenfeld, , and D. Qin, 2008: Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based measurements in China. J. Geophys. Res., 113 , D15115. doi:10.1029/2007JD009549.

    • Search Google Scholar
    • Export Citation
  • Ma, L., , T. Zhang, , O. W. Frauenfeld, , B. Ye, , D. Yang, , and D. Qin, 2009: Evaluation of precipitation from the ERA-40, NCEP-1, and NCEP-2 reanalyses and CMAP-1, CMAP-2, and GPCP-2 with ground-based measurements in China. J. Geophys. Res., 114 , D09105. doi:10.1029/2008JD011178.

    • Search Google Scholar
    • Export Citation
  • Maxino, C. C., , B. J. McAvaney, , A. J. Pitman, , and S. E. Perkins, 2007: Ranking the AR4 climate models over the Murray Darling Basin using simulated maximum temperature, minimum temperature and precipitation. Int. J. Climatol., 28 , 10971112.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2000: Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. Bull. Amer. Meteor. Soc., 81 , 427436.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85 , 369432.

  • Parmesan, C., 2006: Ecological and evolutionary responses to recent climate change. Ann. Rev. Ecol. Evol. Syst., 37 , 637669.

  • Perkins, S. E., , and A. J. Pitman, 2008: Do weak AR4 models bias projections of future climate changes over Australia? Climatic Change, 93 , 527558.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., , A. J. Pitman, , N. J. Holbrook, , and J. McAneney, 2007: Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Climate, 20 , 43564376.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., 2003: The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol., 23 , 479510.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., , and S. E. Perkins, 2009: Global and regional comparison of daily 2-m and 1000-hPa maximum and minimum temperatures in three global reanalyses. J. Climate, 22 , 46674681.

    • Search Google Scholar
    • Export Citation
  • Qian, W., , and A. Qin, 2005: Spatial-temporal characteristics of temperature variation in China. Meteor. Atmos. Phys., 93 , 116.

  • Roads, J., 2003: The NCEP-NCAR, NCEP-DOE, and TRMM tropical atmosphere hydrologic cycles. J. Hydrometeor., 4 , 826840.

  • Shi, X., , and X. Xu, 2007: Regional characteristics of the interdecadal turning of winter/summer climate modes in Chinese mainland. Chin. Sci. Bull., 52 , 101112.

    • Search Google Scholar
    • Export Citation
  • Shi, X., , X. Xu, , and L. Xie, 2006: Reliability analyses of anomalies of NCEP/NCAR reanalysis wind speed and surface temperature in climate change research in China. Acta Meteor. Sin., 64 , 709722.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , S. M. Uppala, , and D. P. Dee, 2007a: Update on ERA-Interim. ECMWF Newsletter, No. 111, ECMWF, Reading, United Kingdom, 5.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , S. M. Uppala, , D. P. Dee, , and S. Kobayashi, 2007b: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

    • Search Google Scholar
    • Export Citation
  • Smith, S. R., , D. M. Legler, , and K. V. Verzone, 2001: Quantifying uncertainties in NCEP reanalyses using high-quality research vessel observations. J. Climate, 14 , 40624072.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, 2007: Climate Change 2007: The Physical Sciences Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and J. G. Olson, 1988: An evaluation and intercomparison of global analyses from NMC and ECMWF. Bull. Amer. Meteor. Soc., 69 , 10471057.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Uppala, S. M., , D. P. Dee, , S. Kobayashi, , P. Berrisford, , and A. J. Simmons, 2008: Towards a climate data assimilation system: Status update of ERAInterim. ECMWF Newsletter, No. 115, ECMWF, Reading, United Kingdom, 12–18.

    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., , X. Zhang, , B. R. Bonsal, , and W. D. Hogg, 2002: Homogenization of daily temperatures over Canada. J. Climate, 15 , 13221334.

    • Search Google Scholar
    • Export Citation
  • Vose, R. S., , D. R. Easterling, , and B. Gleason, 2005: Maximum and minimum temperature trends for the globe: An update through 2004. Geophys. Res. Lett., 32 , L23822. doi:10.1029/2005GL024379.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1993: Guide on the Global Data Processing System. No. 305, World Meteorological Organization.

  • Xu, Y., , Y. Ding, , and Z. Zhao, 2001: Confidence analysis of NCEP/NCAR 50-year global reanalyzed data in climate change research in China (in Chinese). J. Appl. Meter. Sci., 12 , 337347.

    • Search Google Scholar
    • Export Citation
  • Yan, Z., and Coauthors, 2002: Trends of extreme temperatures in Europe and China based on daily observations. Climatic Change, 53 , 355392.

    • Search Google Scholar
    • Export Citation
  • Zhai, P., , and X. Pan, 2003: Trends in temperature extremes during 1951–1999 in China. Geophys. Res. Lett., 30 , 1913. doi:10.1029/2003GL018004.

    • Search Google Scholar
    • Export Citation
  • Zhai, P., , A. Sun, , F. Ren, , X. Liu, , B. Gao, , and Q. Zhang, 1999: Changes of climate extremes in China. Climatic Change, 42 , 203218.

  • Zhai, P., , Q. Chao, , and X. Zou, 2004: Progress in China’s climate change study in the 20th century. J. Geophys. Sci., 14 , 311.

  • Zhao, T., , and C. Fu, 2006: Preliminary comparison and analysis between ERA-40, NCEP-2 reanalysis and observations over China (in Chinese). Climatic Environ. Res., 11 , 1432.

    • Search Google Scholar
    • Export Citation
  • Zhao, T., , and C. Fu, 2009: Applicability evaluation of surface air temperature from several reanalysis datasets in China (in Chinese). Plateau Meteor., 28 , 594606.

    • Search Google Scholar
    • Export Citation
  • Zhao, T., , W. Guo, , and C. Fu, 2008: Calibrating and evaluating reanalysis surface temperature error by topographic correction. J. Climate, 21 , 14401446.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., , R. E. Dickinson, , Y. Tian, , J. Fang, , Q. Li, , R. K. Kaufmann, , C. J. Tucker, , and R. B. Myneni, 2004: Evidence for a significant urbanization effect on climate in China. Proc. Natl. Acad. Sci. USA, 101 , 95409544.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 72 72 19
PDF Downloads 51 51 13

Assessment of Reanalysis Daily Extreme Temperatures with China’s Homogenized Historical Dataset during 1979–2001 Using Probability Density Functions

View More View Less
  • 1 Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
  • | 2 National Climate Center, China Meteorological Administration, Beijing, China
  • | 3 Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
  • | 4 China Meteorological Administration, Beijing, China
  • | 5 Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
© Get Permissions
Restricted access

Abstract

Using a recently homogenized observational daily maximum (TMAX) and minimum temperature (TMIN) dataset for China, the extreme temperatures from the 40-yr ECMWF Re-Analysis (ERA-40), the Japanese 25-year Reanalysis (JRA-25), the NCEP/Department of Energy Global Reanalysis 2 (NCEP-2), and the ECMWF’s ERA-Interim (ERAIn) reanalyses for summer (June–August) and winter (December–February) are assessed by probability density functions for the periods 1979–2001 and 1990–2001. For 1979–2001, no single reanalysis appears to be consistently accurate across eight areas examined over China. The ERA-40 and JRA-25 reanalyses show similar representations and close skill scores over most of the regions of China for both seasons. NCEP-2 generally has lower skill scores, especially over regions with complex topography. The regional and seasonal differences identified are commonly associated with different geographical locations and the methods used to diagnose these quantities. All the selected reanalysis products exhibit better performance for winter compared to summer over most regions of China. The TMAX values from the reanalysis tend to be systematically underestimated, while TMIN is systematically closer to observed values than TMAX. Comparisons of the reanalyses to reproduce the 99.7 percentiles for TMAX and 0.3 percentiles for TMIN show that most reanalyses tend to underestimate the 99.7 percentiles in maximum temperature both in summer and winter. For the 0.3 percentiles in TMIN, NCEP-2 is relatively inaccurate with a −12°C cold bias over the Qinghai–Tibetan Plateau in winter. ERA-40 and JRA-25 generally overestimate the extreme TMIN, and the extreme percentage differences of ERA-40 and JRA-25 are quite similar over all of the regions. The results are generally similar for 1990–2001, but in contrast to the other three reanalysis products the newly released ERAIn is very reasonable, especially for wintertime TMIN, with a skill score greater than 0.83 for each region of China. This demonstrates the great potential of this product for use in future impact assessments on continental scales where those impacts are based on extreme temperatures.

Corresponding author address: Jiafu Mao, Oak Ridge National Laboratory, MS6301, P.O. Box 2008, Oak Ridge, TN 37831-6301. Email: maoj@ornl.gov

Abstract

Using a recently homogenized observational daily maximum (TMAX) and minimum temperature (TMIN) dataset for China, the extreme temperatures from the 40-yr ECMWF Re-Analysis (ERA-40), the Japanese 25-year Reanalysis (JRA-25), the NCEP/Department of Energy Global Reanalysis 2 (NCEP-2), and the ECMWF’s ERA-Interim (ERAIn) reanalyses for summer (June–August) and winter (December–February) are assessed by probability density functions for the periods 1979–2001 and 1990–2001. For 1979–2001, no single reanalysis appears to be consistently accurate across eight areas examined over China. The ERA-40 and JRA-25 reanalyses show similar representations and close skill scores over most of the regions of China for both seasons. NCEP-2 generally has lower skill scores, especially over regions with complex topography. The regional and seasonal differences identified are commonly associated with different geographical locations and the methods used to diagnose these quantities. All the selected reanalysis products exhibit better performance for winter compared to summer over most regions of China. The TMAX values from the reanalysis tend to be systematically underestimated, while TMIN is systematically closer to observed values than TMAX. Comparisons of the reanalyses to reproduce the 99.7 percentiles for TMAX and 0.3 percentiles for TMIN show that most reanalyses tend to underestimate the 99.7 percentiles in maximum temperature both in summer and winter. For the 0.3 percentiles in TMIN, NCEP-2 is relatively inaccurate with a −12°C cold bias over the Qinghai–Tibetan Plateau in winter. ERA-40 and JRA-25 generally overestimate the extreme TMIN, and the extreme percentage differences of ERA-40 and JRA-25 are quite similar over all of the regions. The results are generally similar for 1990–2001, but in contrast to the other three reanalysis products the newly released ERAIn is very reasonable, especially for wintertime TMIN, with a skill score greater than 0.83 for each region of China. This demonstrates the great potential of this product for use in future impact assessments on continental scales where those impacts are based on extreme temperatures.

Corresponding author address: Jiafu Mao, Oak Ridge National Laboratory, MS6301, P.O. Box 2008, Oak Ridge, TN 37831-6301. Email: maoj@ornl.gov

Save