• Alory, G., , S. Wijffels, , and G. Meyers, 2007: Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett., 34 , L02606. doi:10.1029/2006GL028044.

    • Search Google Scholar
    • Export Citation
  • Aoki, S., , N. L. Bindoff, , and J. A. Church, 2005: Interdecadal water mass changes in the Southern Ocean between 30°E and 160°E. Geophys. Res. Lett., 32 , L07607. doi:10.1029/2004GL022220.

    • Search Google Scholar
    • Export Citation
  • Arguez, A., , H. J. Diamond, , F. Fetterer, , A. Horvitz, , and J. M. Levy, 2007: State of the climate in 2006. Bull. Amer. Meteor. Soc., 88 , S1S135.

    • Search Google Scholar
    • Export Citation
  • Banks, H. T., , and N. L. Bindoff, 2003: Comparison of observed temperature and salinity changes in the Indo-Pacific with results from the coupled climate model HadCM3: Processes and mechanisms. J. Climate, 16 , 156166.

    • Search Google Scholar
    • Export Citation
  • Banks, H. T., , R. Wood, , and J. Gregory, 2002: Changes to Indian Ocean Subantarctic Mode Water in a coupled climate model as CO2 forcing increases. J. Phys. Oceanogr., 32 , 28162827.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., , and T. J. McDougall, 1994: Diagnosing climate change and ocean ventilation using hydrographic data. J. Phys. Oceanogr., 24 , 11371152.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , and R. L. Fogt, 2004: Strong trends in the skill of the ERA-40 and NCEP–NCAR reanalyses in the high and midlatitudes of the Southern Hemisphere, 1958–2001. J. Climate, 17 , 46034619.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., , E. L. McDonagh, , and B. A. King, 2003: Changes in ocean water mass properties: Oscillations or trends? Science, 300 , 20862088.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , and T. Cowan, 2007: Trends in Southern Hemisphere circulation in IPCC AR4 models over 1950–99: Ozone depletion versus greenhouse forcing. J. Climate, 20 , 681693.

    • Search Google Scholar
    • Export Citation
  • Connolley, W. M., , and T. J. Bracegirdle, 2007: An Antarctic assessment of IPCC AR4 coupled models. Geophys. Res. Lett., 34 , L22505. doi:10.1029/2007GL031648.

    • Search Google Scholar
    • Export Citation
  • Covey, C., , P. J. Gleckler, , T. J. Phillips, , and D. C. Bader, 2006: Secular trends and climate drift in coupled ocean–atmosphere general circulation models. J. Geophys. Res., 111 , D03107. doi:10.1029/2005JD006009.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., , G. Madec, , A. S. Fischer, , A. Lazar, , and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109 , CL2003. doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2001: Climate drift in a coupled land–atmosphere model. J. Hydrometeor., 2 , 89100.

  • Dong, S., , J. Sprintall, , S. T. Gille, , and L. Talley, 2008: Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res., 113 , C06013. doi:10.1029/2006JC004051.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., , and O. A. Saenko, 2006: Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett., 33 , L06701. doi:10.1029/2005GL025332.

    • Search Google Scholar
    • Export Citation
  • Goes, M., , I. Wainer, , P. R. Gent, , and F. O. Bryan, 2008: Changes in subduction in the South Atlantic Ocean during the 21st century in the CCSM3. Geophys. Res. Lett., 35 , L06701. doi:10.1029/2007GL032762.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., , and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 373–386.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., , and B. Qiu, 1998: The structure of the wind-driven circulation in the subtropical South Pacific Ocean. J. Phys. Oceanogr., 28 , 11731186.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., , and A. H. Orsi, 1997: Southwest Pacific Ocean water-mass changes between 1968/69 and 1990/91. J. Climate, 10 , 306316.

    • Search Google Scholar
    • Export Citation
  • Kållberg, P., , A. Simmons, , S. Uppala, , and M. Fuentes, 2004: The ERA-40 archive. ERA-40 Project Tech. Rep. 17, ECMWF, 31 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Karstensen, J., , and D. Quadfasel, 2002a: Formation of Southern Hemisphere thermocline waters: Water mass conversion and subduction. J. Phys. Oceanogr., 32 , 30203038.

    • Search Google Scholar
    • Export Citation
  • Karstensen, J., , and D. Quadfasel, 2002b: Water subducted into the Indian Ocean subtropical gyre. Deep-Sea Res. II, 49 , 14411457.

  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Marshall, G. J., , and S. A. Harangozo, 2000: An appraisal of NCEP/NCAR reanalysis MSLP data viability for climate studies in the South Pacific. Geophys. Res. Lett., 27 , 30573060.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., , A. J. G. Nurser, , and R. G. Williams, 1993: Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr., 23 , 13151329.

    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., 1977: Subantarctic Mode Water. A Voyage of Discovery: George Deacon 70th Anniversary Volume, M. V. Angel, Ed., Pergamon, 103–119.

    • Search Google Scholar
    • Export Citation
  • McNeil, B. I., , R. J. Matear, , R. M. Key, , J. L. Bullister, , and J. L. Sarmiento, 2003: Anthropogenic CO2 uptake by the ocean based on the global chlorofluorocarbon data set. Science, 299 , 235239.

    • Search Google Scholar
    • Export Citation
  • Meehl, G., and Coauthors, 2009: IPCC standard output from coupled ocean-atmosphere GCMs. WGCM Climate Simulation Panel/PCMDI Rep., 33 pp. [Available online at http://www-pcmdi.llnl.gov/ipcc/standard_output.pdf].

    • Search Google Scholar
    • Export Citation
  • Murray, R. J., , N. L. Bindoff, , and C. J. C. Reason, 2007: Modeling decadal changes on the Indian Ocean section I5 at 32°S. J. Climate, 20 , 31063130.

    • Search Google Scholar
    • Export Citation
  • Naveira-Garabato, A. C., , J. T. Allen, , H. Leach, , V. H. Strass, , and R. T. Pollard, 2001: Mesoscale subduction at the Antarctic Polar Front driven by baroclinic instability. J. Phys. Oceanogr., 31 , 20872107.

    • Search Google Scholar
    • Export Citation
  • Nurser, A. J. G., , R. Marsh, , and R. G. Williams, 1999: Diagnosing water mass formation from air–sea fluxes and surface mixing. J. Phys. Oceanogr., 29 , 14681487.

    • Search Google Scholar
    • Export Citation
  • Orr, J. C., and Coauthors, 2001: Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. Global Biogeochem. Cycles, 15 , 4360.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , and R. X. Huang, 1995: Ventilation of the North Atlantic and North Pacific: subduction versus obduction. J. Phys. Oceanogr., 25 , 23742390.

    • Search Google Scholar
    • Export Citation
  • Qu, T., , S. Gao, , I. Fukumori, , R. A. Fine, , and E. J. Lindstrom, 2008: Subduction of South Pacific waters. Geophys. Res. Lett., 35 , L02610. doi:10.1029/2007GL032605.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1995: Climate drift in an ocean model coupled to a simple, perfectly matched atmosphere. Climate Dyn., 11 , 447458.

  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., , and M. M. Holland, 2006: Twentieth century simulation of the Southern Hemisphere climate in coupled models. Part I: Large scale circulation variability. Climate Dyn., 26 , 217228.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., , and J. Kim, 2008: How well do coupled climate models simulate today’s climate? Bull. Amer. Meteor. Soc., 89 , 303311.

  • Rintoul, S. R., , and M. H. England, 2002: Ekman transport dominates local air–sea fluxes in driving variability of Subantarctic Mode Water. J. Phys. Oceanogr., 32 , 13081321.

    • Search Google Scholar
    • Export Citation
  • Russell, J. L., , R. J. Stouffer, , and K. W. Dixon, 2006: Intercomparison of the Southern Ocean circulations in IPCC coupled model control simulations. J. Climate, 19 , 45604575.

    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., , R. M. Key, , K. M. Johnson, , F. J. Millero, , A. Poisson, , J. L. Sarmiento, , D. W. R. Wallace, , and C. D. Winn, 1999: Anthropogenic CO2 inventory of the Indian Ocean. Global Biogeochem. Cycles, 13 , 179198.

    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305 , 367371.

  • Saenko, O. A., 2007: Ocean circulation: Mechanisms and impacts. Projected Strengthening of the Southern Ocean Winds: Some Implications for the Deep Ocean Circulation, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 365–382.

    • Search Google Scholar
    • Export Citation
  • Sallée, J-B., , N. Wienders, , K. Speer, , and R. Morrow, 2006: Formation of Subantarctic Mode Water in the southeastern Indian Ocean. Ocean Dyn., 56 , 525542.

    • Search Google Scholar
    • Export Citation
  • Sallée, J-B., , K. Speer, , S. R. Rintoul, , and S. Wijiffels, 2010: Southern Ocean thermocline ventilation. J. Phys. Oceanogr., 40 , 509529.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., , A. Santoso, , A. S. Taschetto, , C. C. Ummenhofer, , J. Trevena, , and M. H. England, 2009: Projected changes to the Southern Hemisphere ocean and sea ice in the IPCC AR4 climate models. J. Climate, 22 , 30473078.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., , and I. V. Kamenkovich, 2007: Simulation of Subantarctic Mode Water and Antarctic Intermediate Water in climate models. J. Climate, 20 , 50615080.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Speer, K., , S. R. Rintoul, , and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30 , 32123222.

  • Speich, S., and Coauthors, 2004: Southern Ocean chokepoints: Monitoring fluxes associated with water exchanges between the three ocean basins. CLIVAR Rep., 11 pp. [Available online at http://www.clivar.org/organization/southern/documents/Chokepoints_IPY.pdf].

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and Coauthors, 2002: Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. II, 49 , 16011623.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., , N. L. Bindoff, , and J. A. Church, 1999: Large-scale freshening of intermediate waters in the Pacific and Indian Oceans. Nature, 400 , 440443.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 46 46 10
PDF Downloads 36 36 7

Changes in the Subduction of Southern Ocean Water Masses at the End of the Twenty-First Century in Eight IPCC Models

View More View Less
  • 1 Institute for Marine and Antarctic Studies, University of Tasmania, and Antarctic Climate and Ecosystems CRC, Hobart, Tasmania, Australia, and Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey
  • | 2 Centre for Australian Weather and Climate Research, Aspendale, and Wealth from Oceans National Research Flagship, Clayton South, Victoria, and Institute of Marine and Antarctic Studies, University of Tasmania, and Antarctic Climate and Ecosystems CRC, Hobart, Tasmania, Australia
  • | 3 Centre for Australian Weather and Climate Research, Aspendale, and Wealth from Oceans National Research Flagship, Clayton South, Victoria, and Antarctic Climate and Ecosystems CRC, Hobart, Tasmania, Australia
© Get Permissions
Restricted access

Abstract

A multimodel comparison method is used to assess the sensitivity of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) formation to climate change. For the Intergovernmental Panel on Climate Change A2 emissions scenario (where atmospheric CO2 is 860 ppm at 2100), the models show cooling and freshening on density surfaces less than about 27.4 kg m−3, a pattern that has been observed in the late twentieth century. SAMW (defined by the low potential vorticity layer) and AAIW (defined by the salinity minimum layer) warm and freshen as they shift to lighter density classes. Heat and freshwater fluxes at the ocean surface dominate the projected buoyancy gain at outcrop regions of SAMW and AAIW, whereas the net increase in the Ekman flux of heat and freshwater contributes to a lesser extent. This buoyancy gain, combined with shoaling of the winter mixed layer, reduces the volume of SAMW subducted into the ocean interior by a mean of 8 Sv (12%), and the subduction of AAIW decreases by a mean of 14 Sv (23%; 1 Sv ≡ 106 m3 s−1). Decreases in the projected subduction of the key Southern Ocean upper-water masses imply a slow down in the Southern Ocean circulation in the future, driven by surface warming and freshening. A reduction in the subduction of intermediate waters implies a likely future decrease in the capacity of the Southern Ocean to sequester CO2.

Corresponding author address: Stephanie Downes, Princeton University, 300 Forrestal Road, Princeton, NJ 08544. Email: sdownes@princeton.edu

Abstract

A multimodel comparison method is used to assess the sensitivity of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) formation to climate change. For the Intergovernmental Panel on Climate Change A2 emissions scenario (where atmospheric CO2 is 860 ppm at 2100), the models show cooling and freshening on density surfaces less than about 27.4 kg m−3, a pattern that has been observed in the late twentieth century. SAMW (defined by the low potential vorticity layer) and AAIW (defined by the salinity minimum layer) warm and freshen as they shift to lighter density classes. Heat and freshwater fluxes at the ocean surface dominate the projected buoyancy gain at outcrop regions of SAMW and AAIW, whereas the net increase in the Ekman flux of heat and freshwater contributes to a lesser extent. This buoyancy gain, combined with shoaling of the winter mixed layer, reduces the volume of SAMW subducted into the ocean interior by a mean of 8 Sv (12%), and the subduction of AAIW decreases by a mean of 14 Sv (23%; 1 Sv ≡ 106 m3 s−1). Decreases in the projected subduction of the key Southern Ocean upper-water masses imply a slow down in the Southern Ocean circulation in the future, driven by surface warming and freshening. A reduction in the subduction of intermediate waters implies a likely future decrease in the capacity of the Southern Ocean to sequester CO2.

Corresponding author address: Stephanie Downes, Princeton University, 300 Forrestal Road, Princeton, NJ 08544. Email: sdownes@princeton.edu

Save