• Aceituno, P., 1988: On the functioning of the Southern Oscillation in the South American sector. Part I: Surface climate. Mon. Wea. Rev., 116 , 505524.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., 2001: Annular modes in global daily surface pressure. Geophys. Res. Lett., 28 , 41154118.

  • Barreiro, M., A. Giannini, P. Chang, and R. Saravanan, 2004: On the role of the South Atlantic atmospheric circulation in tropical Atlantic variability. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 143–156.

    • Search Google Scholar
    • Export Citation
  • Bates, S. C., 2008: Coupled ocean–atmosphere interaction and variability in the tropical Atlantic Ocean with and without an annual cycle. J. Climate, 21 , 55015523.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. Huang, 1994: Warm events in the tropical Atlantic. J. Phys. Oceanogr., 24 , 888903.

  • Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature, 385 , 516518.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, and R. Saravanan, 2001: A hybrid coupled model study of tropical Atlantic variability. J. Climate, 14 , 361390.

  • Chiang, J. C., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15 , 26162631.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., Y. Kushnir, and A. Giannini, 2002: Deconstructing Atlantic Intertropical Convergence Zone variability: Influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J. Geophys. Res., 107 , 4004. doi:10.1029/2000JD000307.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., and D. W. Thompson, 2008: Observations of large-scale ocean–atmosphere interaction in the Southern Hemisphere. J. Climate, 21 , 12441259.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., P. V. D. Vaart, and J. Marshall, 2002: A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Climate, 15 , 32803290.

    • Search Google Scholar
    • Export Citation
  • daSilva, A., A. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 83 pp.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., 1996: Relationships of inter-American rainfall to tropical Atlantic and Pacific SST variability. Geophys. Res. Lett., 23 , 33053308.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res., 102 , 929945.

    • Search Google Scholar
    • Export Citation
  • Florenchie, P., C. Reason, J. Lutjeharms, M. Rouault, C. Roy, and S. Masson, 2004: Evolution of interannual warm and cold events in the Southeast Atlantic Ocean. J. Climate, 17 , 23182334.

    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Definition of Antarctic oscillation index. Geophys. Res. Lett., 26 , 459462.

  • Hameed, S., A. Meinster, and K. R. Sperber, 1993: Teleconnections of the Southern Oscillation in the tropical Atlantic sector in the OSU coupled upper ocean–atmosphere GCM. J. Climate, 6 , 487498.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 1978: On modes of tropical circulation and climate anomalies. J. Atmos. Sci., 35 , 22222231.

  • Hastenrath, S., and L. Heller, 1977: Dynamics of climatic hazards in Northeast Brazil. Quart. J. Roy. Meteor. Soc., 103 , 7792.

  • Hastenrath, S., and L. Greischar, 1993: Further work on the prediction of Northeast Brazil rainfall anomalies. J. Climate, 6 , 743758.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., L. C. Castro, and P. Acietuno, 1987: The Southern Oscillation in the tropical Atlantic sector. Contrib. Atmos. Phys., 60 , 447463.

    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., and S. Hastenrath, 1983: Atmosphere–ocean mechanisms of climate anomalies in the Angola–tropical Atlantic sector. J. Phys. Oceanogr., 13 , 11461157.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., V. E. Kousky, and M. T. Kagaro, 1986: Atmospheric conditions in the tropical Atlantic during 1983–1984. Nature, 322 , 243245.

    • Search Google Scholar
    • Export Citation
  • Huang, B., 2004: Remotely forced variability in the tropical Atlantic Ocean. Climate Dyn., 23 , 133152.

  • Huang, B., and J. Shukla, 2005: Ocean–atmosphere interactions in the tropical and subtropical Atlantic Ocean. J. Climate, 18 , 16521672.

    • Search Google Scholar
    • Export Citation
  • Huang, B., P. S. Schopf, and J. Shukla, 2004: Intrinsic ocean–atmosphere variability of the tropical Atlantic ocean. J. Climate, 17 , 20582077.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269 , 676679.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2 , 12391252.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., and M. Latif, 2007: Understanding equatorial Atlantic interannual variability. J. Climate, 20 , 131142.

  • Kinter III, J. L., and Coauthors, 1997: Formulation. Vol. 1, The COLA atmosphere-biosphere general circulation model, COLA Tech. Rep. 51, 46 pp. [Available from COLA, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705].

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., Y. Fan, and E. K. Schneider, 2002: The COLA global coupled and anomaly coupled ocean–atmosphere GCM. J. Climate, 15 , 23012320.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, P. Chang, and A. W. Robertson, 2006: The physical basis for predicting Atlantic sector seasonal-to-interannual climate variability. J. Climate, 19 , 59495970.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1995: Interactions of the tropical oceans. J. Climate, 8 , 952968.

  • Latif, M., and A. Grötzner, 2000: The equatorial Atlantic oscillation and its response to ENSO. Climate Dyn., 16 , 213218.

  • Lau, N-C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9 , 20362057.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2001: North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol., 21 , 18631898.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126 , 15811596.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and S. Häkkinen, 2001: Interannual variability in the tropical Atlantic and linkages to the Pacific. J. Climate, 14 , 27402762.

    • Search Google Scholar
    • Export Citation
  • Münnich, M., and J. Neelin, 2005: Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America. Geophys. Res. Lett., 32 , L21709. doi:10.1029/2005GL023900.

    • Search Google Scholar
    • Export Citation
  • Nobre, P., and J. Shukla, 1996: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9 , 24642479.

    • Search Google Scholar
    • Export Citation
  • Okajima, H., S-P. Xie, and A. Numaguti, 2003: Interhemispheric coherence of tropical climate variability: Effect of the climatological ITCZ. J. Meteor. Soc. Japan, 81 , 13711386.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y., and S-P. Xie, 2006: Some overlooked features of tropical Atlantic climate leading to a new Niño-like phenomenon. J. Climate, 19 , 58595874.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J. Climate, 11 , 483496.

    • Search Google Scholar
    • Export Citation
  • Rayner, N., E. Horton, D. Parker, C. Folland, and R. Hackett, 1996: Version 2.2 of the global sea-ice and sea surface temperature data set. Climate Research Tech. Note 74, Hadley Centre, Met Office, 35 pp.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and A. Loughe, 1995: A reduced-gravity isopycnal ocean model: Hindcasts of El Niño. Mon. Wea. Rev., 123 , 28392863.

  • Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Climate, 16 , 14951510.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., H. Cullen, G. Krahmann, and N. Naik, 1998: An ocean model’s response to North Atlantic Oscillation-like wind forcing. Geophys. Res. Lett., 25 , 277280.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., 1999: A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J. Climate, 12 , 6470.

  • Xie, S-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate, 6 , 15671586.

  • Zhang, Y., J. M. Wallace, and N. Iwasaka, 1996: Is climate variability over the north Pacific a linear response to ENSO? J. Climate, 9 , 14681478.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 0 0 0

Seasonal Influences on Coupled Ocean–Atmosphere Variability in the Tropical Atlantic Ocean

View More View Less
  • 1 Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland
Restricted access

Abstract

Numerous studies and observational analyses point to a connection between the annual cycle and tropical Atlantic variability, specifically the influence of the seasons. Although a previous study has shown that the annual cycle is not necessary for the generation of this variability, this study demonstrates that the annual cycle provides particular conditions that modulate this variability. Particular seasons are investigated through the use of a coupled ocean–atmosphere model using anomaly coupling as the coupling strategy in order to control the mean state of the system. To isolate the influence of each season, the model is integrated in perpetuated mean states that simulate perpetual boreal spring, summer, fall, and winter seasonal mean states. These are compared to a control simulation that contains an annual cycle. Evidence is shown that the annual cycle modulates tropical Atlantic variability in the following three ways: 1) the background mean state for some seasons provides favorable conditions for the growth of particular patterns through regional air–sea feedback mechanisms, 2) mechanisms that excite the variability are seasonally dependent, and 3) the progression through the annual cycle is important for certain variabilities to be excited and grow.

Corresponding author address: Susan C. Bates, University of Washington, Department of Atmospheric Sciences, Box 351640, Seattle, WA 98195-1640. Email: bates@atmos.washington.edu

Abstract

Numerous studies and observational analyses point to a connection between the annual cycle and tropical Atlantic variability, specifically the influence of the seasons. Although a previous study has shown that the annual cycle is not necessary for the generation of this variability, this study demonstrates that the annual cycle provides particular conditions that modulate this variability. Particular seasons are investigated through the use of a coupled ocean–atmosphere model using anomaly coupling as the coupling strategy in order to control the mean state of the system. To isolate the influence of each season, the model is integrated in perpetuated mean states that simulate perpetual boreal spring, summer, fall, and winter seasonal mean states. These are compared to a control simulation that contains an annual cycle. Evidence is shown that the annual cycle modulates tropical Atlantic variability in the following three ways: 1) the background mean state for some seasons provides favorable conditions for the growth of particular patterns through regional air–sea feedback mechanisms, 2) mechanisms that excite the variability are seasonally dependent, and 3) the progression through the annual cycle is important for certain variabilities to be excited and grow.

Corresponding author address: Susan C. Bates, University of Washington, Department of Atmospheric Sciences, Box 351640, Seattle, WA 98195-1640. Email: bates@atmos.washington.edu

Save