• Achard, F., and F. Blasco, 1990: Analysis of vegetation seasonal evolution and mapping of forest cover in West Africa with the use of NOAA AVHRR HRPT data. Photogramm. Eng. Remote Sens., 56 , 13591365.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas, 2007: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res., 112 , D10117. doi:10.1029/2006JD007506.

    • Search Google Scholar
    • Export Citation
  • Badeck, F. W., A. Bondeau, K. Bottcher, D. Doktor, W. Lucht, J. Schaber, and S. Sitch, 2004: Responses of spring phenology to climate change. New Phytol., 162 , 295309.

    • Search Google Scholar
    • Export Citation
  • Boegh, E., H. Soegaard, N. Hanan, P. Kabat, and L. Lesch, 1999: A remote sensing study of the NDVI-Ts relationship and the transpiration from sparse vegetation in the Sahel based on high-resolution satellite data – An overview. Remote Sens. Environ., 69 , 224240.

    • Search Google Scholar
    • Export Citation
  • Boken, V. K., G. Hoogenboom, F. N. Kogan, J. E. Hook, D. L. Thomas, and K. A. Harrison, 2004: Potential of using NOAA-AVHRR data for estimating irrigated area to help solve an inter-state water dispute. Int. J. Remote Sens., 25 , 22772286.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., R. R. Gillies, and E. M. Perry, 1994: A method to make use of thermal infrared temperature and NDVI measurements to infer soil water content and fractional vegetation cover. Remote Sens. Rev., 52 , 4559.

    • Search Google Scholar
    • Export Citation
  • Chapin, F. S., G. R. Shaver, A. E. Giblin, K. J. Nadelhoffer, and J. A. Laundre, 1995: Responses of Arctic Tundra to Experimental and Observed Changes in Climate. Ecology, 76 , 694711.

    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., N. U. Ahmed, S. B. Idso, R. J. Reginato, and C. S. T. Daughtry, 1994: Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sens. Environ., 50 , 117.

    • Search Google Scholar
    • Export Citation
  • Churkina, G., and S. W. Running, 1998: Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems, 1 , 206215.

    • Search Google Scholar
    • Export Citation
  • Coll, C., V. Casselles, J. A. Sobrino, and E. Valor, 1994: On the atmospheric dependence of the split-window equation for land surface temperature. Int. J. Remote Sens., 15 , 105122.

    • Search Google Scholar
    • Export Citation
  • Dall’Olmo, G., and A. Karnieli, 2002: Monitoring phenological cycles of desert ecosystems using NDVI and LST data derived from NOAA-AVHRR imagery. Int. J. Remote Sens., 23 , 40554071.

    • Search Google Scholar
    • Export Citation
  • Defries, R. S., M. C. Hansen, and J. R. G. Townshend, 2000: Global continuous fields of vegetation characteristics: A linear mixture model applied to multi-year 8 km AVHRR data. Int. J. Remote Sens., 21 , 13891414.

    • Search Google Scholar
    • Export Citation
  • Dormann, C. F., and S. J. Woodin, 2002: Climate change in the Arctic: Using plant functional types in a meta-analysis of field experiments. Funct. Ecol., 16 , 417.

    • Search Google Scholar
    • Export Citation
  • Ehrlich, D., and E. F. Lambin, 1996: Broad scale land-cover classification and interannual climatic variability. Int. J. Remote Sens., 17 , 845862.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108 , 8851. doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., and F. W. Davis, 1994: Sources of variation in radiometric surface-temperature over a Tallgrass Prairie. Remote Sens. Environ., 48 , 117.

    • Search Google Scholar
    • Export Citation
  • Gillies, R. R., and T. N. Carlson, 1995: Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. J. Appl. Meteor., 34 , 745756.

    • Search Google Scholar
    • Export Citation
  • Gillies, R. R., T. N. Carlson, J. Cui, W. P. Kustas, and K. S. Humes, 1997: A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature. Int. J. Remote Sens., 18 , 31453166.

    • Search Google Scholar
    • Export Citation
  • Gitelson, A. A., F. Kogan, E. Zakarin, L. Spivak, and L. Lebed, 1998: Using AVHRR data for quantitive estimation of vegetation conditions: Calibration and validation. Adv. Space Res., 22 , 673676.

    • Search Google Scholar
    • Export Citation
  • Goetz, S. J., 1997: Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. Int. J. Remote Sens., 18 , 7194.

    • Search Google Scholar
    • Export Citation
  • Goward, S. N., and A. S. Hope, 1989: Evapotranspiration from combined reflected solar and emitted terrestrial radiation: Preliminary FIFE results from AVHRR data. Adv. Space Res., 9 , 239249.

    • Search Google Scholar
    • Export Citation
  • Goward, S. N., G. D. Cruickshanks, and A. S. Hope, 1985: Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape. Remote Sens. Environ., 18 , 137146.

    • Search Google Scholar
    • Export Citation
  • Goward, S. N., R. H. Waring, D. G. Dye, and J. L. Yang, 1994: Ecological remote sensing at OTTER: Satellite macroscale observations. Ecol. Appl., 4 , 322343.

    • Search Google Scholar
    • Export Citation
  • Goward, S. N., Y. Xue, and K. P. Czajkowski, 2002: Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: An exploration with the simplified simple biosphere model. Remote Sens. Environ., 79 , 225242.

    • Search Google Scholar
    • Export Citation
  • Graglia, E., S. Jonasson, A. Michelsen, and I. K. Schmidt, 1997: Effects of shading, nutrient application and warming on leaf growth and shoot densities of dwarf shrubs in two arctic-alpine plant communities. Ecoscience, 4 , 191198.

    • Search Google Scholar
    • Export Citation
  • Gupta, R. K., T. S. Prasad, and D. Vijayan, 2002: Estimation of roughness length and sensible heat flux from WiFS and NOAA AVHRR data. Land Surface Characterization and Remote Sensing of Ocean Processes, R. K. Gupta, R. P. Singh, and Y. Menard, Eds., Pergamon Press, 33–38.

    • Search Google Scholar
    • Export Citation
  • Gurney, R. J., J. P. Ormsby, and D. K. Hall, 1983: Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape. Permafrost: Fourth Int. Conf., Fairbanks, AK, University of Alaska and National Academy of Sciences, 401–404.

    • Search Google Scholar
    • Export Citation
  • Gutman, G. G., 1990: Towards monitoring droughts from space. J. Climate, 3 , 282295.

  • Hansen, M. C., R. S. Defries, J. R. G. Townshend, and R. Sohlberg, 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21 , 13311364.

    • Search Google Scholar
    • Export Citation
  • Heim, R. R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83 , 11491165.

  • Hope, A. S., 1988: Estimation of wheat canopy resistance using combined remotely sensed spectral reflectance and thermal observations. Remote Sens. Environ., 24 , 369383.

    • Search Google Scholar
    • Export Citation
  • Hope, A. S., and T. P. McDowell, 1992: The relationship between surface temperature and a spectral vegetation index of a tallgrass prairie: Effects of burning and other landscape controls. Int. J. Remote Sens., 13 , 28492863.

    • Search Google Scholar
    • Export Citation
  • Hope, A. S., D. E. Petzold, S. N. Goward, and R. M. Ragan, 1986: Simulated relationships between spectral reflectance, thermal emissions, and evapotranspiration of a soybean canopy. Water Resour. Bull., 22 , 10111019.

    • Search Google Scholar
    • Export Citation
  • Hope, A. S., S. N. Goward, and D. E. Petzold, 1988: Tersail: A numerical model for combined analysis of vegetation canopy bidirectional reflectance and thermal emissions. Remote Sens. Environ., 26 , 287300.

    • Search Google Scholar
    • Export Citation
  • Huete, A. R., R. D. Jackson, and D. F. Post, 1985: Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ., 17 , 3753.

    • Search Google Scholar
    • Export Citation
  • Jang, J. D., A. A. Viau, and F. Anctil, 2006: Thermal-water stress index from satellite images. Int. J. Remote Sens., 27 , 16191639.

  • Ji, L., and A. J. Peters, 2003: Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ., 87 , 8598.

    • Search Google Scholar
    • Export Citation
  • Julien, Y., and J. A. Sobrino, 2009: The Yearly Land Cover Dynamics (YLCD) method: An analysis of global vegetation from NDVI and LST parameters. Remote Sens. Environ., 113 , 329334.

    • Search Google Scholar
    • Export Citation
  • Julien, Y., J. A. Sobrino, and W. Verhoef, 2006: Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sens. Environ., 103 , 4355.

    • Search Google Scholar
    • Export Citation
  • Karnieli, A., and G. Dall’Olmo, 2003: Remote-sensing monitoring of desertification, phenology, and droughts. Manage. Environ. Qual., 14 , 2238.

    • Search Google Scholar
    • Export Citation
  • Karnieli, A., M. Bayasgalan, Y. Bayarjargal, N. Agam, S. Khudulmur, and C. J. Tucker, 2006: Comments on the use of the vegetation health index over Mongolia. Int. J. Remote Sens., 27 , 20172024.

    • Search Google Scholar
    • Export Citation
  • Kawashima, S., 1994: Relation between vegetation, surface temperature, and surface composition in the Tokyo region during winter. Remote Sens. Environ., 50 , 5260.

    • Search Google Scholar
    • Export Citation
  • Kogan, F. N., 1995: Application of vegetation index and brightness temperature for drought detection. Adv. Space Res., 15 , 91100.

  • Kogan, F. N., 1997: Global drought watch from space. Bull. Amer. Meteor. Soc., 78 , 621636.

  • Kogan, F. N., 2000: Satellite-observed sensitivity of world land ecosystems to El Nino/La Nina. Remote Sens. Environ., 74 , 445462.

  • Kogan, F. N., 2002: World droughts in the new millennium from AVHRR-based vegetation health indices. Eos, Trans. Amer. Geophys. Union, 83 , 557564.

    • Search Google Scholar
    • Export Citation
  • Lambin, E. F., 1996: Change detection at multiple temporal scales: Seasonal and annual variations in landscape variables. Photogramm. Eng. Remote Sens., 62 , 931938.

    • Search Google Scholar
    • Export Citation
  • Lambin, E. F., 1997: Land-cover changes in sub-Saharan Africa (1982-1991): Application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale. Remote Sens. Environ., 61 , 181200.

    • Search Google Scholar
    • Export Citation
  • Lambin, E. F., and A. H. Strahler, 1994a: Change-vector analysis in multitemporal space: A tool to detect and categorize land-cover change processes using high temporal-resolution satellite data. Remote Sens. Environ., 48 , 231244.

    • Search Google Scholar
    • Export Citation
  • Lambin, E. F., and A. H. Strahler, 1994b: Indicators of land-cover change for change-vector analysis in multitemporal space at coarse spatial scales. Int. J. Remote Sens., 15 , 20992119.

    • Search Google Scholar
    • Export Citation
  • Lambin, E. F., and D. Ehrlich, 1995: Combining vegetation indexes and surface temperature for land-cover mapping at broad spatial scales. Int. J. Remote Sens., 16 , 573579.

    • Search Google Scholar
    • Export Citation
  • Lambin, E. F., and D. Ehrlich, 1996: The surface temperature-vegetation index space for land cover and land-cover change analysis. Int. J. Remote Sens., 17 , 463487.

    • Search Google Scholar
    • Export Citation
  • Lambin, E. F., and D. Ehrlich, 1997: Land-cover changes in sub-Saharan Africa (1982-1991): Application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale. Remote Sens. Environ., 61 , 181200.

    • Search Google Scholar
    • Export Citation
  • Liu, H. Q., and R. T. Pinker, 2008: Radiative fluxes from satellites: Focus on aerosols. J. Geophys. Res., 113 , D08208. doi:10.1029/2007JD008736.

    • Search Google Scholar
    • Export Citation
  • Liu, H. Q., R. T. Pinker, and B. N. Holben, 2005: A global view of aerosols from merged transport models, satellite, and ground observations. J. Geophys. Res., 110 , D10S15. doi:10.1029/2004JD004695.

    • Search Google Scholar
    • Export Citation
  • Liu, H. Q., R. T. Pinker, M. Chin, B. Holben, and L. Remer, 2008: Synthesis of information on aerosol optical properties. J. Geophys.Res., 113 , D07206. doi:10.1029/2007JD008735.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., and F. N. Kogan, 1996: Monitoring regional drought using the Vegetation Condition Index. Int. J. Remote Sens., 17 , 27612782.

    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., and P. N. Bierwirth, 2001: Rapidly assessing the 1997 drought in Papua New Guinea using composite AVHRR imagery. Int. J. Remote Sens., 22 , 21092128.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American regional reanalysis. Bull. Amer. Meteor. Soc., 87 , 343.

  • Moran, M. S., T. R. Clarke, Y. Inoue, and A. Vidal, 1994: Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ., 49 , 246263.

    • Search Google Scholar
    • Export Citation
  • Moran, M. S., A. F. Rahman, J. C. Washburne, D. C. Goodrich, M. A. Weltz, and W. P. Kustas, 1996: Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland. Agric. For. Meteor., 80 , 87109.

    • Search Google Scholar
    • Export Citation
  • Nadelhoffer, K. J., A. E. Giblin, G. R. Shaver, and J. A. Laundre, 1991: Effects of temperature and substrate quality on element mineralization in six Arctic soils. Ecology, 72 , 242253.

    • Search Google Scholar
    • Export Citation
  • Narasimhan, B., R. Srinivasan, and A. D. Whittaker, 2003: Estimation of potential evapotranspiration from NOAA-AVHRR satellite. Appl. Eng. Agric., 19 , 309318.

    • Search Google Scholar
    • Export Citation
  • Nemani, R., and S. Running, 1989: Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J. Appl. Meteor., 28 , 276284.

    • Search Google Scholar
    • Export Citation
  • Nemani, R., and S. Running, 1997: Land cover characterization using multitemporal red, near-IR, and thermal-IR data from NOAA/AVHRR. Ecol. Appl., 7 , 7990.

    • Search Google Scholar
    • Export Citation
  • Nemani, R., L. Pierce, S. Running, and S. Goward, 1993: Developing satellite-derived estimates of surface moisture status. J. Appl. Meteor., 32 , 548557.

    • Search Google Scholar
    • Export Citation
  • Nemani, R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. Running, 2003: Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300 , 15601563.

    • Search Google Scholar
    • Export Citation
  • Olthof, I., and R. Latifovic, 2007: Short-term response of arctic vegetation NDVI to temperature anomalies. Int. J. Remote Sens., 28 , 48234840.

    • Search Google Scholar
    • Export Citation
  • Ottle, C., and D. Vidalmadjar, 1994: Assimilation of soil moisture inferred from infrared remote sensing in a hydrological model over the HAPEX-Mobilhy region. J. Hydrol., 158 , 241264.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., and J. A. Ewing, 1985: Modeling surface solar radiation: Model formulation and validation. J. Climate Appl. Meteor., 24 , 389401.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., and I. Laszlo, 1992: Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor., 31 , 194211.

    • Search Google Scholar
    • Export Citation
  • Price, J. C., 1990: Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans. Geosci. Remote Sens., 28 , 940948.

    • Search Google Scholar
    • Export Citation
  • Prihodko, L., and S. N. Goward, 1997: Estimation of air temperature from remotely sensed surface observations. Remote Sens. Environ., 60 , 335346.

    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., and T. N. Papakryiakou, 2003: An evaluation of agricultural drought indices for the Canadian prairies. Agric. For. Meteor., 118 , 4962.

    • Search Google Scholar
    • Export Citation
  • Rodriguez-Puebla, C., R. T. Pinker, and S. Nigam, 2008: Relationship between downwelling surface shortwave radiative fluxes and sea surface temperature over the tropical Pacific: AMIP II models versus satellite estimates. Ann. Geophys., 26 , 785794.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612287.

  • Rossow, W. B., and E. N. Dueñas, 2004: The International Satellite Cloud Climatology Project (ISCCP) Web site: An online resource for research. Bull. Amer. Meteor. Soc., 85 , 167172.

    • Search Google Scholar
    • Export Citation
  • Sandholt, I., K. Rasmussen, and J. Andersen, 2002: A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ., 79 , 213224.

    • Search Google Scholar
    • Export Citation
  • Schiffer, R. A., and W. B. Rossow, 1985: ISCCP global radiance data set: A new resource for climate research. Bull. Amer. Meteor. Soc., 66 , 14981505.

    • Search Google Scholar
    • Export Citation
  • Schultz, P. A., and M. S. Halpert, 1995: Global analysis of the relationships among a vegetation index, precipitation and land-surface temperature. Int. J. Remote Sens., 16 , 27552777.

    • Search Google Scholar
    • Export Citation
  • Seiler, R. A., F. Kogan, and J. Sullivan, 1998: AVHRR-based vegetation and temperature condition indices for drought detection in Argentina. Adv. Space Res., 21 , 481484.

    • Search Google Scholar
    • Export Citation
  • Smith, R. C. G., and B. J. Choudhury, 1991: Analysis of normalized difference and surface temperature observations over southeastern Australia. Int. J. Remote Sens., 12 , 20212044.

    • Search Google Scholar
    • Export Citation
  • Sobrino, J. A., and N. Raissouni, 2000: Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. Int. J. Remote Sens., 21 , 353366.

    • Search Google Scholar
    • Export Citation
  • Sobrino, J. A., M. H. El Kharraz, J. Cuenca, and N. Raissouni, 1998: Thermal inertia mapping from NOAA-AVHRR data. Adv. Space Res., 22 , 655667.

    • Search Google Scholar
    • Export Citation
  • Stisen, S., I. Sandholt, A. Nørgaard, R. Fensholt, and L. Eklundh, 2007: Estimation of diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sens. Environ., 110 , 262274.

    • Search Google Scholar
    • Export Citation
  • Stow, D. A., and Coauthors, 2004: Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems. Remote Sens. Environ., 89 , 281308.

    • Search Google Scholar
    • Export Citation
  • Sui, C. H., X. F. Li, M. M. Rienecker, K. M. Lau, I. Laszlo, and R. T. Pinker, 2003: The role of daily surface forcing in the upper ocean over the tropical Pacific: A numerical study. J. Climate, 16 , 756766.

    • Search Google Scholar
    • Export Citation
  • Sun, D., and M. Kafatos, 2007: Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophys. Res. Lett., 34 , L24406. doi:10.1029/2007GL031485.

    • Search Google Scholar
    • Export Citation
  • Tateishi, R., and M. Ebata, 2004: Analysis of phenological change patterns using 1982-2000 Advanced Very High Resolution Radiometer (AVHRR) data. Int. J. Remote Sens., 25 , 22872300.

    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., 1979: Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ., 8 , 127150.

  • Tucker, C. J., and B. J. Choudhury, 1987: Satellite remote sensing of drought conditions. Remote Sens. Environ., 23 , 243251.

  • Unganai, L. S., and F. N. Kogan, 1998: Southern Africa’s recent droughts from space. Adv. Space Res., 21 , 507511.

  • Van Wijk, M. T., M. Williams, J. A. Laundre, and G. R. Shaver, 2003: Interannual variability of plant phenology in tussock tundra: Modelling interactions of plant productivity, plant phenology, snowmelt and soil thaw. Global Change Biol., 9 , 743758.

    • Search Google Scholar
    • Export Citation
  • Walker, M. D., and Coauthors, 2006: Plant community responses to experimental warming across the tundra biome. Proc. Natl. Acad. Sci. USA, 103 , 13421346.

    • Search Google Scholar
    • Export Citation
  • Wan, Z., P. Wang, and X. Li, 2004: Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index products for monitoring drought in the southern Great Plains, USA. Int. J. Remote Sens., 25 , 6172.

    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., and M. H. Glantz, 1985: Understanding the drought phenomenon: The role of definitions. Water Int., 10 , 111120.

  • Zhang, B. L., R. T. Pinker, and P. W. Stackhouse, 2007: An empirical orthogonal function iteration approach for obtaining homogeneous radiative fluxes from satellite observations. J. Appl. Meteor. Climatol., 46 , 435444.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 123 123 123
PDF Downloads 119 119 119

Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations

View More View Less
  • a *Remote Sensing Laboratory, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
  • | + Hydrology and Remote Sensing Laboratory, ARS, USDA, Beltsville, Maryland
  • | # Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
  • | @ Biospheric Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | & NASA Headquarters, Washington, D.C
Restricted access

Abstract

A large number of water- and climate-related applications, such as drought monitoring, are based on spaceborne-derived relationships between land surface temperature (LST) and the normalized difference vegetation index (NDVI). The majority of these applications rely on the existence of a negative slope between the two variables, as identified in site- and time-specific studies. The current paper investigates the generality of the LST–NDVI relationship over a wide range of moisture and climatic/radiation regimes encountered over the North American continent (up to 60°N) during the summer growing season (April–September). Information on LST and NDVI was obtained from long-term (21 years) datasets acquired with the Advanced Very High Resolution Radiometer (AVHRR). It was found that when water is the limiting factor for vegetation growth (the typical situation for low latitudes of the study area and during the midseason), the LST–NDVI correlation is negative. However, when energy is the limiting factor for vegetation growth (in higher latitudes and elevations, especially at the beginning of the growing season), a positive correlation exists between LST and NDVI. Multiple regression analysis revealed that during the beginning and the end of the growing season, solar radiation is the predominant factor driving the correlation between LST and NDVI, whereas other biophysical variables play a lesser role. Air temperature is the primary factor in midsummer. It is concluded that there is a need to use empirical LST–NDVI relationships with caution and to restrict their application to drought monitoring to areas and periods where negative correlations are observed, namely, to conditions when water—not energy—is the primary factor limiting vegetation growth.

Corresponding author address: Prof. Arnon Karnieli, Remote Sensing Laboratory, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel. Email: karnieli@bgu.ac.il

Abstract

A large number of water- and climate-related applications, such as drought monitoring, are based on spaceborne-derived relationships between land surface temperature (LST) and the normalized difference vegetation index (NDVI). The majority of these applications rely on the existence of a negative slope between the two variables, as identified in site- and time-specific studies. The current paper investigates the generality of the LST–NDVI relationship over a wide range of moisture and climatic/radiation regimes encountered over the North American continent (up to 60°N) during the summer growing season (April–September). Information on LST and NDVI was obtained from long-term (21 years) datasets acquired with the Advanced Very High Resolution Radiometer (AVHRR). It was found that when water is the limiting factor for vegetation growth (the typical situation for low latitudes of the study area and during the midseason), the LST–NDVI correlation is negative. However, when energy is the limiting factor for vegetation growth (in higher latitudes and elevations, especially at the beginning of the growing season), a positive correlation exists between LST and NDVI. Multiple regression analysis revealed that during the beginning and the end of the growing season, solar radiation is the predominant factor driving the correlation between LST and NDVI, whereas other biophysical variables play a lesser role. Air temperature is the primary factor in midsummer. It is concluded that there is a need to use empirical LST–NDVI relationships with caution and to restrict their application to drought monitoring to areas and periods where negative correlations are observed, namely, to conditions when water—not energy—is the primary factor limiting vegetation growth.

Corresponding author address: Prof. Arnon Karnieli, Remote Sensing Laboratory, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel. Email: karnieli@bgu.ac.il

Save