• Awaka, J., T. Iguchi, and K. Okamoto, 2004: On rain type classification algorithm TRMM PR 2A23 V6. Extended Abstracts, Second TRMM Int. Conf., Nara, Japan, JAXA.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64 , 23322354.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convective atmospheres. Quart. J. Roy. Meteor. Soc., 120 , 11111143.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., and D. G. Golder, 1993: Tropical 40–50- and 25–30-day oscillations appearing in realistic and idealized GFDL climate models and the ECMWF dataset. J. Atmos. Sci., 50 , 464494.

    • Search Google Scholar
    • Export Citation
  • Hendon, H., and B. Liebmann, 1994: Organization of convection within the Madden-Julian oscillation. J. Geophys. Res., 99 , 80738083.

  • Houze Jr., R. A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115 , 425461.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and D. A. Randall, 1994: Low-frequency oscillations radiative–convective systems. J. Atmos. Sci., 51 , 10891099.

  • Jakob, C., and C. Schumacher, 2008: Precipitation and latent heating characteristics of the major tropical western Pacific cloud regimes. J. Climate, 21 , 43484364.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12 , 23792418.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14 , 780793.

  • Khouider, B., and A. J. Majda, 2007: A simple multicloud parameterization for convectively coupled tropical waves. Part II: Nonlinear simulations. J. Atmos. Sci., 64 , 23322354.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and P. H. Chan, 1985: Aspects of the 40–50 day oscillation during the northern winter as inferred from outgoing longwave radiation. Mon. Wea. Rev., 113 , 18891909.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44 , 950972.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and H-T. Wu, 2003: Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett., 30 , 22902294.

  • Lau, K-M., and D. E. Waliser, 2005: Intraseasonal Variability in the Atmosphere-Ocean Climate System. Springer Praxis Books, 474 pp.

  • Lau, K-M., L. Peng, C. H. Sui, and T. Nakazawa, 1989: Dynamics of super clusters, westerly wind bursts, 30–60 day oscillations, and ENSO: A unified view. J. Meteor. Soc. Japan, 67 , 205219.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., H-T. Wu, Y. Sud, and G. Walker, 2005: Effects of cloud microphysics on tropical atmospheric hydrologic processes and intraseasonal variability. J. Climate, 18 , 47314751.

    • Search Google Scholar
    • Export Citation
  • Lee, M-I., I. S. Kang, J-K. Kim, and B. E. Mapes, 2001: Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. J. Geophys. Res., 106 , 1421914233.

    • Search Google Scholar
    • Export Citation
  • Li, C., X. Jia, J. Ling, W. Zou, and C. Zhang, 2009: Sensitivity of MJO simulations to diabatic heating profiles. Climate Dyn., 32 , 167187.

    • Search Google Scholar
    • Export Citation
  • Lin, J., and B. E. Mapes, 2004: Radiation budget of the tropical intraseasonal oscillation. J. Atmos. Sci., 61 , 20502062.

  • Lin, J., B. E. Mapes, M. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61 , 296309.

    • Search Google Scholar
    • Export Citation
  • Lin, J., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19 , 26652690.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., O. Alves, and H. H. Hendon, 2008: An enhanced moisture convergence–evaporation feedback mechanism for MJO air–sea interaction. J. Atmos. Sci., 65 , 970986.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and C. D. Kummerow, 2006: Observations of tropical precipitating clouds ranging from shallow to deep convective systems. Geophys. Res. Lett., 33 , L16805. doi:10.1029/2006GL026547.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., T. S. L’Ecuyer, and C. D. Kummerow, 2005: Variability in the characteristics of precipitation systems in the tropical Pacific. Part I: Spatial structure. J. Climate, 18 , 823840.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., T. S. L’Ecuyer, and C. D. Kummerow, 2006: The Madden–Julian oscillation recorded in early observations from the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Sci., 63 , 27772794.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66 , 823839.

    • Search Google Scholar
    • Export Citation
  • Pohl, B., and A. J. Matthews, 2007: Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. J. Climate, 20 , 26592674.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16 , 17391756.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., and K. Nakamura, 2000: TRMM radar observations of shallow precipitation over the tropical oceans. J. Climate, 13 , 41074124.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., S. Gualdi, S. Legutke, and V. Gayler, 2005: The Madden–Julian oscillation in ECHAM4 coupled and uncoupled general circulation models. Climate Dyn., 25 , 117140.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, and R. Adler, 1993: Retrieval algorithms for estimating the vertical profiles for latent heat release. J. Meteor. Soc. Japan, 71 , 685700.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and Coauthors, 2006: Retrieval of latent heating from TRMM measurements. Bull. Amer. Meteor. Soc., 87 , 15551572.

  • Waliser, D. E., K. M. Lau, and J-H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56 , 333358.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2003: AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dyn., 21 , 423446.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and T. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51 , 13861400.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132 , 19171932.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., 2003: A shallow CISK, deep equilibrium mechanism for the interaction between large-scale convection and large-scale circulations in the tropics. J. Atmos. Sci., 60 , 377392.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat ad moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43 , RG2003. doi:10.1029/2004RG000158.

  • Zhang, C., and D. Nolan, 2008: Shallow meridional circulations in the tropical atmosphere. J. Climate, 21 , 34533470.

  • Zhang, G. J., and M. Mu, 2005: Simulation of the Madden–Julian oscillation in the NCAR CCM3 using a revised Zhang–McFarlane convection parameterization scheme. J. Climate, 18 , 40464064.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 15
PDF Downloads 2 2 2

Characteristics of Precipitation, Cloud, and Latent Heating Associated with the Madden–Julian Oscillation

View More View Less
  • 1 Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Science Systems and Applications, Inc., Lanham, Maryland
Restricted access

Abstract

This study investigates the evolution of cloud and rainfall structures associated with Madden–Julian oscillation (MJO) using Tropical Rainfall Measuring Mission (TRMM) data. Two complementary indices are used to define MJO phases. Joint probability distribution functions (PDFs) of cloud-top temperature and radar echo-top height are constructed for each of the eight MJO phases. The genesis stage of MJO convection over the western Pacific (phases 1 and 2) features a bottom-heavy PDF, characterized by abundant warm rain, low clouds, suppressed deep convection, and higher sea surface temperature (SST). As MJO convection develops (phases 3 and 4), a transition from the bottom-heavy to top-heavy PDF occurs. The latter is associated with the development of mixed-phase rain and middle-to-high clouds, coupled with rapid SST cooling. At the MJO convection peak (phase 5), a top-heavy PDF contributed by deep convection with mixed-phase and ice-phase rain and high echo-top heights (>5 km) dominates. The decaying stage (phases 6 and 7) is characterized by suppressed SST, reduced total rain, increased contribution from stratiform rain, and increased nonraining high clouds. Phase 7, in particular, signals the beginning of a return to higher SST and increased warm rain. Phase 8 completes the MJO cycle, returning to a bottom-heavy PDF and SST conditions similar to phase 1. The structural changes in rain and clouds at different phases of MJO are consistent with corresponding changes in derived latent heating profiles, suggesting the importance of a diverse mix of warm, mixed-phase, and ice-phase rain associated with low-level, congestus, and high clouds in constituting the life cycle and the time scales of MJO.

Corresponding author address: Dr. K.-M. Lau, Chief, Laboratory for Atmospheres, Code 613, Building 33, Rm. C121, NASA Goddard Space Flight Center, Greenbelt, MD 20771. Email: william.k.lau@nasa.gov

This article included in the TRMM Diabatic Heating special collection.

Abstract

This study investigates the evolution of cloud and rainfall structures associated with Madden–Julian oscillation (MJO) using Tropical Rainfall Measuring Mission (TRMM) data. Two complementary indices are used to define MJO phases. Joint probability distribution functions (PDFs) of cloud-top temperature and radar echo-top height are constructed for each of the eight MJO phases. The genesis stage of MJO convection over the western Pacific (phases 1 and 2) features a bottom-heavy PDF, characterized by abundant warm rain, low clouds, suppressed deep convection, and higher sea surface temperature (SST). As MJO convection develops (phases 3 and 4), a transition from the bottom-heavy to top-heavy PDF occurs. The latter is associated with the development of mixed-phase rain and middle-to-high clouds, coupled with rapid SST cooling. At the MJO convection peak (phase 5), a top-heavy PDF contributed by deep convection with mixed-phase and ice-phase rain and high echo-top heights (>5 km) dominates. The decaying stage (phases 6 and 7) is characterized by suppressed SST, reduced total rain, increased contribution from stratiform rain, and increased nonraining high clouds. Phase 7, in particular, signals the beginning of a return to higher SST and increased warm rain. Phase 8 completes the MJO cycle, returning to a bottom-heavy PDF and SST conditions similar to phase 1. The structural changes in rain and clouds at different phases of MJO are consistent with corresponding changes in derived latent heating profiles, suggesting the importance of a diverse mix of warm, mixed-phase, and ice-phase rain associated with low-level, congestus, and high clouds in constituting the life cycle and the time scales of MJO.

Corresponding author address: Dr. K.-M. Lau, Chief, Laboratory for Atmospheres, Code 613, Building 33, Rm. C121, NASA Goddard Space Flight Center, Greenbelt, MD 20771. Email: william.k.lau@nasa.gov

This article included in the TRMM Diabatic Heating special collection.

Save