• Arblaster, J., and G. Meehl, 2005: Contributions of external forcings to southern annular mode trends. J. Climate, 19 , 28962905.

  • Bengtsson, L., S. Hagemann, and K. I. Hodges, 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109 , D11111. doi:10.1029/2004JD004536.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23 , 13631388.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C., M. Widmann, V. Dymnikov, J. Wallace, and I. Blade, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12 , 19002009.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D., and R. Fogt, 2004: Strong trends in the skill of the ERA-40 and NCEP-NCAR reanalyses in the high and middle latitudes of the Southern Hemisphere, 1958–2001. J. Climate, 17 , 46034619.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and K. R. Gurney, 2007: Observed relationships between the Southern Annular Mode and atmospheric carbon dioxide. Global Biogeochem. Cycles, 21 , GB4014. doi:10.1029/2006GB002796.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and I. Watterson, 2002: Modes of interannual variability of the Southern Hemisphere circulation simulated by the CSIRO climate model. J. Climate, 15 , 11591174.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2007: Trends in Southern Hemisphere circulation in IPCC AR4 models over 1950–99: Ozone depletion versus greenhouse forcing. J. Climate, 20 , 681693.

    • Search Google Scholar
    • Export Citation
  • Chereskin, T., 1995: Direct evidence for an Ekman balance in the California Current. J. Geophys. Res., 100 , 1826118269.

  • Chereskin, T., and D. Roemmich, 1991: A comparison of measured and wind-derived Ekman transport at 11°N in the Atlantic Ocean. J. Phys. Oceanogr., 21 , 869878.

    • Search Google Scholar
    • Export Citation
  • Chereskin, T., and J. Price, 2001: Ekman transport and pumping. Encyclopedia of Ocean Sciences, Academic Press, 809–815.

  • Ciasto, L., and D. Thompson, 2008: Observations of large-scale ocean–atmosphere interaction in the Southern Hemisphere. J. Climate, 21 , 12441259.

    • Search Google Scholar
    • Export Citation
  • Connolley, W. M., and T. J. Bracegirdle, 2007: An Antarctic assessment of IPCC AR4 coupled models. Geophys. Res. Lett., 34 , L22505. doi:10.1029/2007GL031648.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109 , C12003. doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Ekman, V., 1905: On the influence of the earth’s rotation on ocean currents. Ark. Mat. Astron. Fys., 2 , 153.

  • Eyring, V., and Coauthors, 2007: Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res., 112 , D16303. doi:10.1029/2006JD008332.

    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. Bradley, J. Hare, A. Grachev, and J. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Gillett, N., and D. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302 , 273275.

  • Gillett, N., T. D. Kell, and P. D. Jones, 2006: Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett., 33 , L23704. doi:10.1029/2006GL027721.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., J. A. Carton, and H. Liu, 2008: Comparison of bulk sea surface and mixed layer temperatures. J. Geophys. Res., 113 , C10026. doi:10.1029/2008JC004871.

    • Search Google Scholar
    • Export Citation
  • Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15 , 30433057.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., E. C. Kent, and P. K. Taylor, 2002: Wind stress forcing of the ocean in the SOC climatology: Comparisons with NCEP–NCAR, ECMWF, UWM/COADS, and Hellerman and Rosenstein datasets. J. Phys. Oceanogr., 32 , 19932019.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP–NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Karpechko, A., N. Gillett, G. Marshall, and J. Screen, 2009: Climate impacts of the southern annular mode simulated by the CMIP3 models. J. Climate, 22 , 37513768.

    • Search Google Scholar
    • Export Citation
  • Kraus, E., and J. Turner, 1967: A one-dimensional model of the seasonal thermocline: II. The general theory and its consequences. Tellus, 19 , 98106.

    • Search Google Scholar
    • Export Citation
  • Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a non-local boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Lefebvre, W., H. Goosse, R. Timmermann, and T. Fichefet, 2004: Influence of the Southern Annular Mode on the sea ice–ocean system. J. Geophys. Res., 109 , C09005. doi:10.1029/2004JC002403.

    • Search Google Scholar
    • Export Citation
  • Lovenduski, N. S., and N. Gruber, 2005: Impact of the Southern Annular Mode on Southern Ocean circulation and biology. Geophys. Res. Lett., 32 , L11603. doi:10.1029/2005GL022727.

    • Search Google Scholar
    • Export Citation
  • Lovenduski, N. S., N. Gruber, S. C. Doney, and I. D. Lima, 2007: Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. Global Biogeochem. Cycles, 21 , GB2026. doi:10.1029/2006GB002900.

    • Search Google Scholar
    • Export Citation
  • Marshall, G., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16 , 41344143.

  • Marshall, G., 2007: Half-century seasonal relationships between the Southern Annular Mode and Antarctic temperatures. Int. J. Climatol., 27 , 373383.

    • Search Google Scholar
    • Export Citation
  • Marshall, G., P. A. Stott, J. Turner, W. M. Connolley, J. C. King, and T. A. Lachlan-Cope, 2004: Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys. Res. Lett., 31 , L14205. doi:10.1029/2004GL019952.

    • Search Google Scholar
    • Export Citation
  • Maze, G., F. D’Andrea, and A. C. de Verdiere, 2006: Low-frequency variability in the Southern Ocean region in a simplified coupled model. J. Geophys. Res., 111 , C05010. doi:10.1029/2005JC003181.

    • Search Google Scholar
    • Export Citation
  • Meehl, G., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. Mitchell, R. Stouffer, and K. Taylor, 2007: The WCPP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88 , 13831394.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., G. A. Schmidt, and D. T. Shindell, 2006: Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res., 111 , D18101. doi:10.1029/2005JD006323.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., S. Pawson, R. L. Fogt, J. E. Nielsen, and W. D. Neff, 2008: Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett., 35 , L08714. doi:10.1029/2008GL033317.

    • Search Google Scholar
    • Export Citation
  • Raphael, M., and M. Holland, 2006: Twentieth century simulation of the Southern Hemisphere climate in coupled models. Part 1: Large-scale circulation variability. Climate Dyn., 26 , 217228.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplin, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., and J. Kim, 2008: Uncertainties in the climate mean state of global observations, reanalyses, and the GFDL climate model. J. Geophys. Res., 113 , D05106. doi:10.1029/2007JD009278.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R., N. Rayner, T. Smith, D. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Rossow, W., and R. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612288.

  • Russell, J., R. Stouffer, and K. Dixon, 2006: Intercomparison of the Southern Ocean circulations in IPCC coupled model control simulations. J. Climate, 19 , 45604575.

    • Search Google Scholar
    • Export Citation
  • Schudlich, R., and J. Price, 1998: Observations of seasonal variation in the Ekman layer. J. Phys. Oceanogr., 28 , 11871204.

  • Screen, J., N. Gillett, D. Stevens, G. Marshall, and H. Roscoe, 2009: The role of eddies in the Southern Ocean temperature response to the Southern Annular Mode. J. Climate, 22 , 806818.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. England, 2006: Coupled ocean–atmosphere–ice response to variations in the southern annular mode. J. Climate, 19 , 44574486.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. England, 2007: Coupled ocean–atmosphere feedback in the southern annular mode. J. Climate, 20 , 36773692.

  • Sen Gupta, A., A. Santoso, A. Taschetto, C. Ummenhofer, M. England, and J. Trevena, 2009: Projected changes to the Southern Hemisphere ocean and sea ice in the IPCC AR4 climate models. J. Climate, 22 , 30473078.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., and G. A. Schmidt, 2004: Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys. Res. Lett., 31 , L18209. doi:10.1029/2004GL020724.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Marquis, K. Averyt, M. Tignor, and H. L. Miller, Eds.,. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Son, S-W., and Coauthors, 2008: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320 , 14861489.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., D. G. Martinson, R. C. Smith, X. Yuan, and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance in relation to El Niño–Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res., 113 , C03S90. doi:10.1029/2007JC004269.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., 2004: On the (in)homogeneity of reanalysis products. J. Climate, 17 , 38663873.

  • Thompson, D., and J. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296 , 895899.

  • Thompson, D., J. Wallace, and G. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13 , 10181036.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Verdy, A., J. Marshall, and A. Czaja, 2006: Sea surface temperature variability along the path of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 36 , 13171331.

    • Search Google Scholar
    • Export Citation
  • Watterson, I., 2001: Zonal wind vacillation and its interaction with the ocean: Implications for interannual variability and predictability. J. Geophys. Res., 106 , 2396523975.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 1 1 1

Mixed Layer Temperature Response to the Southern Annular Mode: Mechanisms and Model Representation

View More View Less
  • 1 Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
  • | 2 School of Mathematics, University of East Anglia, Norwich, United Kingdom
Restricted access

Abstract

Previous studies have shown that simulated sea surface temperature (SST) responses to the southern annular mode (SAM) in phase 3 of the Coupled Model Intercomparison Project (CMIP3) climate models compare poorly to the observed response. The reasons behind these model inaccuracies are explored. The ocean mixed layer heat budget is examined in four of the CMIP3 models and by using observations–reanalyses. The SST response to the SAM is predominantly driven by sensible and latent heat flux and Ekman heat transport anomalies. The radiative heat fluxes play a lesser but nonnegligible role. Errors in the simulated SST responses are traced back to deficiencies in the atmospheric response to the SAM. The models exaggerate the surface wind response to the SAM leading to large unrealistic Ekman transport anomalies. During the positive phase of the SAM, this results in excessive simulated cooling in the 40°–65°S latitudes. Problems with the simulated wind stress responses, which relate partly to errors in the simulated winds themselves and partly to the transfer coefficients used in the models, are a key cause of the errors in the SST response. In the central Pacific sector (90°–150°W), errors arise because the simulated SAM is too zonally symmetric. Substantial errors in the net shortwave radiation are also found, resulting from a poor representation of the changes in cloud cover associated with the SAM. The problems in the simulated SST responses shown by this study are comparable to deficiencies previously identified in the CMIP3 multimodel mean. Therefore, it is likely that the deficiencies identified here are common to other climate models.

* Current affiliation: School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia.

+ Current affiliation: Canadian Centre for Climate Modelling and Analysis, University of Victoria, Victoria, British Columbia, Canada.

Corresponding author address: James A. Screen, School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia. Email: screenj@unimelb.edu.au

Abstract

Previous studies have shown that simulated sea surface temperature (SST) responses to the southern annular mode (SAM) in phase 3 of the Coupled Model Intercomparison Project (CMIP3) climate models compare poorly to the observed response. The reasons behind these model inaccuracies are explored. The ocean mixed layer heat budget is examined in four of the CMIP3 models and by using observations–reanalyses. The SST response to the SAM is predominantly driven by sensible and latent heat flux and Ekman heat transport anomalies. The radiative heat fluxes play a lesser but nonnegligible role. Errors in the simulated SST responses are traced back to deficiencies in the atmospheric response to the SAM. The models exaggerate the surface wind response to the SAM leading to large unrealistic Ekman transport anomalies. During the positive phase of the SAM, this results in excessive simulated cooling in the 40°–65°S latitudes. Problems with the simulated wind stress responses, which relate partly to errors in the simulated winds themselves and partly to the transfer coefficients used in the models, are a key cause of the errors in the SST response. In the central Pacific sector (90°–150°W), errors arise because the simulated SAM is too zonally symmetric. Substantial errors in the net shortwave radiation are also found, resulting from a poor representation of the changes in cloud cover associated with the SAM. The problems in the simulated SST responses shown by this study are comparable to deficiencies previously identified in the CMIP3 multimodel mean. Therefore, it is likely that the deficiencies identified here are common to other climate models.

* Current affiliation: School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia.

+ Current affiliation: Canadian Centre for Climate Modelling and Analysis, University of Victoria, Victoria, British Columbia, Canada.

Corresponding author address: James A. Screen, School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia. Email: screenj@unimelb.edu.au

Save