• Alley, W. M., 1984: The Palmer Drought Severity Index: Limitations and assumptions. J. Climate Appl. Meteor., 23 , 11001109.

  • Bacmeister, J., P. J. Pegion, S. D. Schubert, and M. J. Suarez, 2000: An atlas of seasonal means simulated by the NSIPP 1 atmospheric GCM. Vol. 17, NASA Tech. Memo. 104606, Goddard Space Flight Center, Greenbelt, MD, 194 pp.

    • Search Google Scholar
    • Export Citation
  • Bracco, A., F. Kucharski, F. Molteni, W. Hazeleger, and C. Severijns, 2007: A recipe for simulating the interannual variability of the Asian summer monsoon and its relation with ENSO. Climate Dyn., 28 , 441460.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. H. Whetton, and A. B. Pittock, 2001: Fluctuations of the relationship between ENSO and northeast Australian rainfall. Climate Dyn., 17 , 421432.

    • Search Google Scholar
    • Export Citation
  • Campana, K., and P. Caplan, Eds., cited. 2005: Technical procedures bulletin for T382 Global Forecast System. [Available online at http://www.emc.ncep.noaa.gov/gc_wmb/Documentation/TPBoct05/T382.TPB.FINAL.htm].

    • Search Google Scholar
    • Export Citation
  • Campbell, G. S., and J. M. Norman, 1998: An Introduction to Environmental Biophysics. 2nd ed. Springer-Verlag, 286 pp.

  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Dingman, S. L., 1994: Physical Hydrology. Prentice-Hall, 600 pp.

  • Enfield, D. B., and E. J. Alfaro, 1999: The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and Pacific Oceans. J. Climate, 12 , 20932103.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nunez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28 , 20772080.

    • Search Google Scholar
    • Export Citation
  • England, M. H., C. C. Ummenhofer, and A. Santoso, 2006: Interannual rainfall extremes over southwest Western Australia linked to Indian Ocean climate variability. J. Climate, 19 , 19481969.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., T. R. Knutson, and P. C. D. Milly, 2006: Weak simulated extratropical responses to complete tropical deforestation. J. Climate, 19 , 28352850.

    • Search Google Scholar
    • Export Citation
  • Fontaine, B., and S. Janicot, 1996: Sea surface temperature fields associated with West African rainfall anomaly types. J. Climate, 9 , 29352940.

    • Search Google Scholar
    • Export Citation
  • GFDL Global Atmospheric Model Development Team, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17 , 46414673.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., J. C. H. Chiang, M. A. Cane, Y. Kushnir, and R. Seager, 2001: The ENSO teleconnection to the tropical Atlantic Ocean: Contributions of the remote and local SSTs to rainfall variability in the tropical Americas. J. Climate, 14 , 45304544.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302 , 10271030.

    • Search Google Scholar
    • Export Citation
  • Gibbs, W. J., and J. V. Maher, 1967: Rainfall deciles as drought indicators. Australian Bureau of Meteorology Bulletin 48, 33 pp.

  • Hastenrath, S., 1978: On modes of tropical circulation and climate anomalies. J. Atmos. Sci., 35 , 22222231.

  • Heim Jr., R. R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83 , 11491165.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., T. L. Delworth, J. Lu, K. L. Findell, and T. R. Knutson, 2005: Simulation of Sahel drought in the 20th and 21st centuries. Proc. Natl. Acad. Sci. USA, 102 , 1789117896.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 2003: Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16 , 17751790.

  • Herweijer, C., and R. Seager, 2008: The global footprint of persistent extra-tropical drought in the instrumental era. Int. J. Climatol., 28 , 17611774. doi:10.1002/joc.1590.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., and A. Kumar, 2003: The perfect ocean for drought. Science, 299 , 691694.

  • Hoerling, M., J. Hurrell, J. Eischeid, and A. Phillips, 2006: Detection and attribution of twentieth-century northern and southern African rainfall change. J. Climate, 19 , 39894008.

    • Search Google Scholar
    • Export Citation
  • Kaiser, H. F., 1958: The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23 , 187200. doi:10.1007/BF02289233.

    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288 , 19841986.

  • Keyantash, J., and J. A. Dracup, 2002: The quantification of drought: An evaluation of drought indices. Bull. Amer. Meteor. Soc., 83 , 11671180.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., F. Yang, L. Goddard, and S. Schubert, 2004: Differing trends in the tropical surface temperatures and precipitation over land and oceans. J. Climate, 17 , 653664.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13 , 42874309.

    • Search Google Scholar
    • Export Citation
  • Li, H., A. Dai, T. Zhou, and J. Lu, 2008: Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Climate Dyn., doi:10.1007/s00382-008-0482-7.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101 , 41364141.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and A. B. Shmakin, 2002: Global modeling of land water and energy balances. Part I: The Land Dynamics (LaD) model. J. Hydrometeor., 3 , 283299.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and M. Chelliah, 2006: The modified Palmer drought severity index based on the NCEP North American Regional Reanalysis. J. Appl. Meteor. Climatol., 45 , 13621375.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21 , 59045924.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113 , G01021. doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Palmer, W., 1965: Meteorological drought. Research Paper 45, U.S. Weather Bureau, Washington, D.C., 58 pp.

  • Priestley, C. H. S., and R. J. Taylor, 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100 , 8192.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rind, D., R. Goldberg, J. Hansen, C. Rosenzweig, and R. Ruedy, 1990: Potential evapotranspiration and the likelihood of future drought. J. Geophys. Res., 95 , (D7). 998310004.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Elsevier Science, 304 pp.

  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: On the cause of the 1930s Dust Bowl. Science, 303 , 18551859.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and Coauthors, 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22 , 52515272.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16 , 29602978.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005: Modeling tropical forcing of persistent droughts and pluvials: 1856–2000. J. Climate, 18 , 40684091.

    • Search Google Scholar
    • Export Citation
  • Shabbar, A., and W. Skinner, 2004: Summer drought patterns in Canada and the relationship to global sea surface temperatures. J. Climate, 17 , 28662880.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24662477.

  • Stöckli, R., and Coauthors, 2008: Use of FLUXNET in the Community Land Model development. J. Geophys. Res., 113 , G01025. doi:10.1029/2007JG000562.

    • Search Google Scholar
    • Export Citation
  • Suppiah, R., 2004: Trends in the Southern Oscillation phenomenon and Australian rainfall and changes in their relationship. Int. J. Climatol., 24 , 269290.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309 , 115118.

    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83 , 11811190.

  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38 , 5594.

  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20 , 43164340.

  • Vecchi, G. A., A. Clement, and B. J. Soden, 2008: Examining the tropical Pacific’s response to global warming. EOS, Trans. Amer. Geophys. Union, 89 .doi:10.1029/2008EO090002.

    • Search Google Scholar
    • Export Citation
  • Von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wang, B., Q. Ding, X. Fu, I-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32 , L15711. doi:10.1029/2005GL022734.

    • Search Google Scholar
    • Export Citation
  • Wells, N., S. Goddard, and M. J. Hayes, 2004: A self-calibrating Palmer drought severity index. J. Climate, 17 , 23352351.

  • White, D. H., and B. O’Meagher, 1995: Coping with exceptional droughts in Australia. Drought Network News, No. 7, National Drought Mitigation Center, Lincoln, NE, 13–17.

    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., and M. H. Glanz, 1985: Understanding the drought phenomenon: The role of definitions. Water Int., 10 , 111120.

  • Xin, X., R. Yu, T. Zhou, and B. Wang, 2006: Drought in late spring of south China in recent decades. J. Climate, 19 , 31973206.

  • Zhou, T., and Coauthors, 2008: The CLIVAR C20C project: Which components of the Asian–Australian monsoon circulation variations are forced and reproducible? Climate Dyn., 33 , 10511068. doi:10.1007/s00382-008-0501-8.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 43 43 43
PDF Downloads 1 1 1

Impact of Common Sea Surface Temperature Anomalies on Global Drought and Pluvial Frequency

View More View Less
  • 1 Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
Restricted access

Abstract

Climate model simulations run as part of the Climate Variability and Predictability (CLIVAR) Drought Working Group initiative were analyzed to determine the impact of three patterns of sea surface temperature (SST) anomalies on drought and pluvial frequency and intensity around the world. The three SST forcing patterns include a global pattern similar to the background warming trend, a pattern in the Pacific, and a pattern in the Atlantic. Five different global atmospheric models were forced by fixed SSTs to test the impact of these SST anomalies on droughts and pluvials relative to a climatologically forced control run.

The five models generally yield similar results in the locations of drought and pluvial frequency changes throughout the annual cycle in response to each given SST pattern. In all of the simulations, areas with an increase in the mean drought (pluvial) conditions tend to also show an increase in the frequency of drought (pluvial) events. Additionally, areas with more frequent extreme events also tend to show higher intensity extremes. The cold Pacific anomaly increases drought occurrence in the United States and southern South America and increases pluvials in Central America and northern and central South America. The cold Atlantic anomaly increases drought occurrence in southern Central America, northern South America, and central Africa and increases pluvials in central South America. The warm Pacific and Atlantic anomalies generally lead to reversals of the drought and pluvial increases described with the corresponding cold anomalies. More modest impacts are seen in other parts of the world. The impact of the trend pattern is generally more modest than that of the two other anomaly patterns.

Corresponding author address: Dr. Kirsten L. Findell, NOAA/GFDL, 201 Forrestal Road, Princeton, NJ 08540-6649. Email: kirsten.findell@noaa.gov

This article included in the U.S. CLIVAR Drought special collection.

Abstract

Climate model simulations run as part of the Climate Variability and Predictability (CLIVAR) Drought Working Group initiative were analyzed to determine the impact of three patterns of sea surface temperature (SST) anomalies on drought and pluvial frequency and intensity around the world. The three SST forcing patterns include a global pattern similar to the background warming trend, a pattern in the Pacific, and a pattern in the Atlantic. Five different global atmospheric models were forced by fixed SSTs to test the impact of these SST anomalies on droughts and pluvials relative to a climatologically forced control run.

The five models generally yield similar results in the locations of drought and pluvial frequency changes throughout the annual cycle in response to each given SST pattern. In all of the simulations, areas with an increase in the mean drought (pluvial) conditions tend to also show an increase in the frequency of drought (pluvial) events. Additionally, areas with more frequent extreme events also tend to show higher intensity extremes. The cold Pacific anomaly increases drought occurrence in the United States and southern South America and increases pluvials in Central America and northern and central South America. The cold Atlantic anomaly increases drought occurrence in southern Central America, northern South America, and central Africa and increases pluvials in central South America. The warm Pacific and Atlantic anomalies generally lead to reversals of the drought and pluvial increases described with the corresponding cold anomalies. More modest impacts are seen in other parts of the world. The impact of the trend pattern is generally more modest than that of the two other anomaly patterns.

Corresponding author address: Dr. Kirsten L. Findell, NOAA/GFDL, 201 Forrestal Road, Princeton, NJ 08540-6649. Email: kirsten.findell@noaa.gov

This article included in the U.S. CLIVAR Drought special collection.

Save