• Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33 , L01702. doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., 2007: Role of eddies in the interannual variability of Hadley cell strength. Geophys. Res. Lett., 34 , L22705. doi:10.1029/2007GL030971.

    • Search Google Scholar
    • Export Citation
  • Cheng, W., C. M. Bitz, and J. C. H. Chiang, 2007: Adjustment of the global climate to an abrupt slowdown of the Atlantic meridional overturning circulation. Ocean Circulation: Mechanisms and Impacts, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 295–314.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high-latitude ice cover on the marine Intertropical Convergence Zone. Climate Dyn., 25 , 477496.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., 2006: The role of the ocean in the seasonal cycle of the Hadley circulation. J. Atmos. Sci., 63 , 33513365.

  • Fang, M., and K. T. Tung, 1996: A simple model of nonlinear Hadley circulation with an ITCZ: Analytical and numerical solutions. J. Atmos. Sci., 53 , 12411261.

    • Search Google Scholar
    • Export Citation
  • Fang, M., and K. T. Tung, 1999: Time-dependent nonlinear Hadley circulation. J. Atmos. Sci., 56 , 17971807.

  • Held, I. M., 2000: The general circulation of the atmosphere. Woods Hole Oceanographic Institution Tech Rep. 54 pp. [Available online at http://www.whoi.edu/fileserver.do?id=21464&pt=10&p=17332].

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37 , 515534.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and R. S. Lindzen, 1992: The influence of concentrated heating on the Hadley circulation. J. Atmos. Sci., 49 , 12331241.

  • James, I. N., 1994: Introduction to Circulating Atmospheres. Cambridge University Press, 422 pp.

  • Korty, R. L., and T. Schneider, 2008: Extent of Hadley circulations in dry atmospheres. Geophys. Res. Lett., 35 , L23803. doi:10.1029/2008GL035847.

    • Search Google Scholar
    • Export Citation
  • Laurian, A., S. S. Drijfhout, W. Hazeleger, and B. van den Hurk, 2010: Response of the Western European climate to a collapse of the thermohaline circulation. Climate Dyn., doi:10.1007/s00382-008-0513-4, in press.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and H-K. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60 , 14901503.

  • Lindzen, R. S., and A. Y. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45 , 24162427.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34 , L06805. doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1994: Multiple century response of a coupled ocean–atmosphere model to an increase of atmospheric carbon dioxide. J. Climate, 7 , 523.

    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5 , 91127.

    • Search Google Scholar
    • Export Citation
  • Quan, X-W., H. F. Diaz, and M. P. Hoerling, 2004: Change of the tropical Hadley cell since 1950. The Hadley Cell: Past, Present and Future, H. F. Diaz and R. S. Bradley, Eds., Cambridge University Press, 85–120.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM 5. Part I: Model description. Max-Planck Institute Rep. 349, 127 pp.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 1977: Axially symmetric steady-state models of the basic state for instability and climate studies. Part II: Nonlinear calculations. J. Atmos. Sci., 34 , 280297.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and D. S. Battisti, 2007: Challenges to our understanding of the general circulation: Abrupt climate change. The Global Circulation of the Atmosphere: Phenomena, Theory, Challenges, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 332–372.

    • Search Google Scholar
    • Export Citation
  • Shaffrey, L., and R. Sutton, 2006: Bjerknes compensation and the decadal variability of energy transports in a coupled climate model. J. Climate, 19 , 11671181.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., and Coauthors, 2008: When can we expect extremely high surface temperatures? Geophys. Res. Lett., 35 , L14703. doi:10.1029/2008GL034071.

    • Search Google Scholar
    • Export Citation
  • van der Schrier, G., S. S. Drijfhout, W. Hazeleger, and L. Noulin, 2007: Increasing the Atlantic subtropical jet cools the circum-North Atlantic region. Meteor. Z., 16 , 675684. doi:10.1127/0941-2948/2007/0252.

    • Search Google Scholar
    • Export Citation
  • van der Swaluw, E., S. S. Drijfhout, and W. Hazeleger, 2007: Bjerknes compensation at high northern latitudes: The ocean forcing the atmosphere. J. Climate, 20 , 60236032.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and R. A. Wood, 2002: Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54 , 251267.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and P. Wu, 2008: Relations between northward ocean and atmosphere energy transports in a coupled climate model. J. Climate, 21 , 561575.

    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2005: Response of idealized Hadley circulations to seasonally varying heating. Geophys. Res. Lett., 32 , L06813. doi:10.1029/2004GL022304.

    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63 , 33333350.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18 , 18531860.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 2 2 2

The Atmospheric Response to a Thermohaline Circulation Collapse: Scaling Relations for the Hadley Circulation and the Response in a Coupled Climate Model

View More View Less
  • 1 Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands
Restricted access

Abstract

The response of the tropical atmosphere to a collapse of the thermohaline circulation (THC) is investigated by comparing two 5-member ensemble runs with a coupled climate model (CCM), the difference being that in one ensemble a hosing experiment was performed. An extension of the Held–Hou–Lindzen model for the Hadley circulation is developed to interpret the results. The forcing associated with a THC collapse is qualitatively similar to, but smaller in amplitude than, the solstitial shift from boreal summer to winter. This forcing results from reduced ocean heat transport creating an anomalous cross-equatorial SST gradient. The small amplitude of the forcing makes it possible to arrive at analytical expressions using standard perturbation theory. The theory predicts the latitudinal shift between the Northern Hemisphere (NH) and Southern Hemisphere (SH) Hadley cells, and the relative strength of the anomalous cross-equatorial Hadley cell compared to the solstitial cell. The poleward extent of the Hadley cells is controlled by other physics. In the NH the Hadley cell contracts, while zonal velocities increase and the subtropical jet shifts equatorward, whereas in the SH cell the opposite occurs. This behavior can be explained by assuming that the poleward extent of the Hadley cell is determined by baroclinic instability: it scales with the inverse of the isentropic slopes. Both theory and CCM results indicate that a THC collapse and changes in tropical circulation do not act in competition, as a possible explanation for abrupt climate change; they act in concert.

Corresponding author address: Dr. Sybren S. Drijfhout, P.O. Box 201, Royal Netherlands Meteorological Institute (KNMI), 3730 AE De Bilt, Netherlands. Email: drijfhou@knmi.nl

Abstract

The response of the tropical atmosphere to a collapse of the thermohaline circulation (THC) is investigated by comparing two 5-member ensemble runs with a coupled climate model (CCM), the difference being that in one ensemble a hosing experiment was performed. An extension of the Held–Hou–Lindzen model for the Hadley circulation is developed to interpret the results. The forcing associated with a THC collapse is qualitatively similar to, but smaller in amplitude than, the solstitial shift from boreal summer to winter. This forcing results from reduced ocean heat transport creating an anomalous cross-equatorial SST gradient. The small amplitude of the forcing makes it possible to arrive at analytical expressions using standard perturbation theory. The theory predicts the latitudinal shift between the Northern Hemisphere (NH) and Southern Hemisphere (SH) Hadley cells, and the relative strength of the anomalous cross-equatorial Hadley cell compared to the solstitial cell. The poleward extent of the Hadley cells is controlled by other physics. In the NH the Hadley cell contracts, while zonal velocities increase and the subtropical jet shifts equatorward, whereas in the SH cell the opposite occurs. This behavior can be explained by assuming that the poleward extent of the Hadley cell is determined by baroclinic instability: it scales with the inverse of the isentropic slopes. Both theory and CCM results indicate that a THC collapse and changes in tropical circulation do not act in competition, as a possible explanation for abrupt climate change; they act in concert.

Corresponding author address: Dr. Sybren S. Drijfhout, P.O. Box 201, Royal Netherlands Meteorological Institute (KNMI), 3730 AE De Bilt, Netherlands. Email: drijfhou@knmi.nl

Save