• An, S-I., 2009: A review on interdecadal changes in the nonlinearity of the El Niño–Southern Oscillation. Theor. Appl. Climatol., 97 , 2940.

    • Search Google Scholar
    • Export Citation
  • An, S-I., and F-F. Jin, 2000: An eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophys. Res. Lett., 27 , 25732576.

    • Search Google Scholar
    • Export Citation
  • An, S-I., and F-F. Jin, 2001: Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Climate, 14 , 34213432.

    • Search Google Scholar
    • Export Citation
  • An, S-I., and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and it impact on the ENSO frequency. J. Climate, 13 , 20442055.

    • Search Google Scholar
    • Export Citation
  • An, S-I., and B. Wang, 2001: Mechanisms of locking the El Niño and La Niña mature phases to boreal winter. J. Climate, 14 , 21642176.

    • Search Google Scholar
    • Export Citation
  • An, S-I., A. Timmermann, L. Bejarano, F-F. Jin, F. Justino, Z. Liu, and A. W. Tudhope, 2004: Modeling evidence for enhanced El Niño–Southern Oscillation amplitude during the Last Glacial Maximum. Paleoceanography, 19 , PA4009. doi:10.1029/2004PA001020.

    • Search Google Scholar
    • Export Citation
  • An, S-I., Z. Ye, and W. W. Hsieh, 2006: Changes in the leading ENSO modes associated with the late 1970s climate shift: Role of surface zonal current. Geophys. Res. Lett., 33 , L14609. doi:10.1029/2006GL026604.

    • Search Google Scholar
    • Export Citation
  • An, S-I., J-S. Kug, Y-G. Ham, and I-S. Kang, 2008: Successive modulation of ENSO to the future greenhouse warming. J. Climate, 21 , 321.

    • Search Google Scholar
    • Export Citation
  • Battisti, D., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46 , 16871712.

    • Search Google Scholar
    • Export Citation
  • Bejarano, L., 2006: Coexistence of leading equatorial coupled modes for ENSO. Ph.D. dissertation, The Florida State University, 118 pp.

  • Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18 , 820829.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Blanke, B., J. D. Neelin, and D. Gutzler, 1997: Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J. Climate, 10 , 14731486.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5 , 541560.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., F-F. Jin, and G. J. van Oldenborgh, 2005: The simplest ENSO recharge oscillator. Geophys. Res. Lett., 32 , L13706. doi:10.1029/2005GL022951.

    • Search Google Scholar
    • Export Citation
  • Chang, P., B. Wang, T. Li, and L. Ji, 1994: Interactions between the seasonal cycle and the Southern Oscillation: Frequency entrainment and chaos in an intermediate coupled ocean–atmosphere model. Geophys. Res. Lett., 21 , 28172820.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, H. Li, and M. Flugel, 1996: Chaotic dynamics versus stochastic processes in El Niño–Southern Oscillation in coupled ocean–atmosphere models. Physica D, 98 , 301320.

    • Search Google Scholar
    • Export Citation
  • Choi, J., S-I. An, B. Dewitte, and W-W. Hsieh, 2009: Interactive feedback between the tropical Pacific decadal oscillation and ENSO in a coupled general circulation model. J. Climate, 22 , 65976611.

    • Search Google Scholar
    • Export Citation
  • Eckert, C., and M. Latif, 1997: Predictability of a stochastically forced hybrid coupled model of El Niño. J. Climate, 10 , 14881504.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and S. G. H. Philander, 2000: Is El Niño changing? Science, 288 , 19972002.

  • Fedorov, A. V., and S. G. H. Philander, 2001: A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14 , 30863101.

    • Search Google Scholar
    • Export Citation
  • Galanti, E., and E. Tziperman, 2000: ENSO’s phase locking to the seasonal cycle in the fast-SST, fast-wave, and mixed-mode regimes. J. Atmos. Sci., 57 , 29362950.

    • Search Google Scholar
    • Export Citation
  • Galanti, E., E. Tziperman, M. Harrison, A. Rosati, R. Giering, and Z. Sirkes, 2002: The equatorial thermocline outcropping: A seasonal control on the tropical Pacific ocean–atmosphere instability strength. J. Climate, 15 , 27212739.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gill, A., 1980: Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Gu, D., and S. G. H. Philander, 1995: Secular changes of annual and interannual variability in the tropics during the past century. J. Climate, 8 , 864876.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26 , 329348.

  • Ham, Y-G., J-S. Kug, and I-S. Kang, 2009: Optimal initial perturbations for El Nino ensemble prediction with ensemble Kalman filter. Climate Dyn., 33 , 959973. doi:10.1007/s00382-009-0582-z.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1996: Tropical ocean–atmosphere interaction, the Pacific cold tongue, and the El Niño–Southern Oscillation. Science, 274 , 7678.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., D. J. Neelin, and M. Ghil, 1994: El Niño on the devil’s staircase: Annual subharmonic steps to chaos. Science, 264 , 7072.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., S-I. An, A. Timmermann, and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30 , 1120. doi:10.1029/2002GL016356.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and Coauthors, 2006: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate, 19 , 39523972.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and R. Kleeman, 2000: Rectification of the Madden–Julian oscillation into the ENSO cycle. J. Climate, 13 , 35603575.

    • Search Google Scholar
    • Export Citation
  • Li, T., and S. G. H. Philander, 1996: On the annual cycle of the eastern equatorial Pacific. J. Climate, 9 , 29862998.

  • Li, T., and T. F. Hogan, 1999: The role of the annual-mean climate on seasonal and interannual variability of the tropical Pacific in a coupled GCM. J. Climate, 12 , 780792.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and E. Roeckner, 1996: Design and performance of a new cloud microphysics parameterization developed for the ECHAM4 general circulation model. Climate Dyn., 12 , 557572.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88 , 13831394.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., 2003: Atmospheric simulations using a GCM with simplified physical parameterizations. I: Model climatology and variability in multi-decadal experiments. Climate Dyn., 20 , 175191.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12 , 11991220.

  • Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11 , 14431451.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110 , 354384.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., P. Friederichs, and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J. Climate, 17 , 37613774.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology Rep. 349, 127 pp.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and R. J. Burgman, 2006: A simple mechanism for ENSO residuals and asymmetry. J. Climate, 19 , 31673179.

  • Sun, D-Z., and T. Zhang, 2006: A regulatory effect of ENSO on the time-mean thermal stratification of the equatorial upper ocean. Geophys. Res. Lett., 33 , L07710. doi:10.1029/2005GL025296.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and F-F. Jin, 2002: A nonlinear mechanism for decadal El Niño amplitude changes. Geophys. Res. Lett., 29 , 1003. doi:10.1029/2001GL013369.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., F-F. Jin, and J. Abshagen, 2003: A nonlinear theory for El Niño bursting. J. Atmos. Sci., 60 , 152165.

  • Timmermann, A., F-F. Jin, and M. Collins, 2004: Intensification of the annual cycle in the tropical Pacific due to greenhouse warming. Geophys. Res. Lett., 31 , L12208. doi:10.1029/2004GL019442.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., S. J. Lorenz, S-I. An, A. Clement, and S-P. Xie, 2007a: The effect of orbital forcing on the mean climate and variability of the tropical Pacific. J. Climate, 20 , 41474159.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2007b: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20 , 48994919.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79 , 6178.

  • Tziperman, E., L. Stone, M. Cane, and H. Jarosh, 1994: El Niño chaos: Overlapping of resonances between the seasonal cycle and the Pacific ocean–atmosphere oscillator. Science, 264 , 7274.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., M. A. Cane, and S. E. Zebiak, 1995: Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the quasiperiodicity route to chaos. J. Atmos. Sci., 52 , 293306.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., M. A. Cane, S. E. Zebiak, Y. Xue, and B. Blumenthal, 1998: Locking of El Niño’s peak time to the end of the calendar year in the delayed oscillator picture of ENSO. J. Climate, 11 , 21912199.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5 , 561576.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Z. Fang, 1996: Chaotic oscillation of the tropical climate: A dynamic system theory for ENSO. J. Atmos. Sci., 53 , 27862802.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and S-I. An, 2001: Why the properties of El Niño changed during the late 1970s. Geophys. Res. Lett., 28 , 37093712.

  • Wang, B., and S-I. An, 2002: A mechanism for decadal changes of ENSO behavior: Roles of background wind changes. Climate Dyn., 18 , 475486.

    • Search Google Scholar
    • Export Citation
  • Wang, B., A. Barcilon, and Z. Fang, 1999: Stochastic dynamics of ENSO. J. Atmos. Sci., 56 , 520.

  • Wang, X. L., 1994: The coupling of the annual cycle and ENSO over the tropical Pacific. J. Atmos. Sci., 51 , 11151136.

  • Xie, S-P., 1994: On the genesis of the equatorial annual cycle. J. Climate, 7 , 20082013.

  • Xie, S-P., 1995: Interaction between the annual and interannual variations in the equatorial Pacific. J. Phys. Oceanogr., 25 , 19301941.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., 1997: Stability of equatorially symmetric and asymmetric climates under annual solar forcing. Quart. J. Roy. Meteor. Soc., 123 , 13591375.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2 2 2
PDF Downloads 1 1 1

The Inverse Effect of Annual-Mean State and Annual-Cycle Changes on ENSO

View More View Less
  • * Department of Atmospheric Sciences/Global Environmental Lab, Yonsei University, Seoul, South Korea
  • | + School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
  • | # Korea Ocean Research and Development Institute, Ansan, South Korea
  • | @ International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii
Restricted access

Abstract

The influence of the tropical Pacific annual-mean state on the annual-cycle amplitude and El Niño–Southern Oscillation (ENSO) variability is studied using the Max Planck Institute for Meteorology coupled general circulation model (CGCM) ECHAM5/Max Planck Institute Ocean Model (MPI-OM1). In a greenhouse warming experiment, an intensified annual cycle of sea surface temperature (SST) in the eastern tropical Pacific is associated with reduced ENSO variability, and vice versa.

Analysis showed that the annual-mean states, especially the surface warming in the western Pacific and the thermocline deepening in the central Pacific, which is concurrent with the strong annual cycle, act to suppress ENSO amplitude and to intensify the annual-cycle amplitude, and vice versa. The western Pacific warming acts to reduce air–sea coupling strength and to shorten the ocean adjustment time scale, and the deepening of central Pacific thermocline acts to diminish vertical advection of the anomalous ocean temperature by the annual-mean upwelling. Consequently, ENSO activity is suppressed by the annual-mean states during the strong annual-cycle decades, and the opposite case associated with the weak annual-cycle decades is also true. Furthermore, the time integration of an intermediate ENSO model forced with different background state configurations, and a stability analysis of its linearized version, show that annual-mean background states during the weak (strong) annual-cycle decades are characterized by an enhanced (reduced) linear growth rate of ENSO or similarly large (small) variability of ENSO. However, the annual-cycle component of the background state changes cannot significantly modify ENSO variability.

Using a hybrid coupled model, it is demonstrated that diagnosed annual-mean background states corresponding to a reduced (enhanced) annual cycle suppress (enhance) the development of the annual cycle of SST in the eastern equatorial Pacific, mainly through the weakening (intensifying) of zonal temperature advection of annual-mean SST by the annual-cycle zonal current. The above results support the idea that climate background state changes control both ENSO and the annual-cycle amplitude in opposing ways.

Corresponding author address: Prof. Soon-Il An, Department of Atmospheric Sciences, Yonsei University, Seoul 120-749, South Korea. Email: sian@yonsei.ac.kr

Abstract

The influence of the tropical Pacific annual-mean state on the annual-cycle amplitude and El Niño–Southern Oscillation (ENSO) variability is studied using the Max Planck Institute for Meteorology coupled general circulation model (CGCM) ECHAM5/Max Planck Institute Ocean Model (MPI-OM1). In a greenhouse warming experiment, an intensified annual cycle of sea surface temperature (SST) in the eastern tropical Pacific is associated with reduced ENSO variability, and vice versa.

Analysis showed that the annual-mean states, especially the surface warming in the western Pacific and the thermocline deepening in the central Pacific, which is concurrent with the strong annual cycle, act to suppress ENSO amplitude and to intensify the annual-cycle amplitude, and vice versa. The western Pacific warming acts to reduce air–sea coupling strength and to shorten the ocean adjustment time scale, and the deepening of central Pacific thermocline acts to diminish vertical advection of the anomalous ocean temperature by the annual-mean upwelling. Consequently, ENSO activity is suppressed by the annual-mean states during the strong annual-cycle decades, and the opposite case associated with the weak annual-cycle decades is also true. Furthermore, the time integration of an intermediate ENSO model forced with different background state configurations, and a stability analysis of its linearized version, show that annual-mean background states during the weak (strong) annual-cycle decades are characterized by an enhanced (reduced) linear growth rate of ENSO or similarly large (small) variability of ENSO. However, the annual-cycle component of the background state changes cannot significantly modify ENSO variability.

Using a hybrid coupled model, it is demonstrated that diagnosed annual-mean background states corresponding to a reduced (enhanced) annual cycle suppress (enhance) the development of the annual cycle of SST in the eastern equatorial Pacific, mainly through the weakening (intensifying) of zonal temperature advection of annual-mean SST by the annual-cycle zonal current. The above results support the idea that climate background state changes control both ENSO and the annual-cycle amplitude in opposing ways.

Corresponding author address: Prof. Soon-Il An, Department of Atmospheric Sciences, Yonsei University, Seoul 120-749, South Korea. Email: sian@yonsei.ac.kr

Save