• Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33 , 16071623.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., J. M. Wallace, N. C. Lau, and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34 , 10401053.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. Swanson, 2002: Storm track dynamics. J. Climate, 15 , 21632183.

  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303 , 978983.

    • Search Google Scholar
    • Export Citation
  • Dupont, F., C. G. Hannah, and D. G. Wright, 2006: Model investigation of the Slope Water, north of the Gulf Stream. Geophys. Res. Lett., 33 , L05604. doi:10.1029/2005GL025321.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 411 pp.

  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 529 pp.

  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59 , 10411061.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18 , 41084129.

  • Joyce, T. M., Y. O. Kwon, and L. Yu, 2009: On the relationship between synoptic wintertime atmospheric variability and path shifts in the Gulf Stream and the Kuroshio Extension. J. Climate, 22 , 31773192.

    • Search Google Scholar
    • Export Citation
  • Lau, K-H., and N-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 118 , 18881913.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45 , 27182743.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., 2002: Progress in scatterometer applications. J. Oceanogr., 58 , 121136.

  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy-zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58 , 33123327.

  • Mailier, P. J., D. B. Stephenson, C. A. T. Ferro, and K. I. Hodges, 2006: Serial clustering of extratropical cyclones. Mon. Wea. Rev., 134 , 22242240.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452 , 206209.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1992: Mid-winter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49 , 16291642.

  • Nakamura, H., and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17 , 18281844.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35 , L15709. doi:10.1029/2008GL034010.

    • Search Google Scholar
    • Export Citation
  • Nakamura, M., and S. Yamane, 2009: Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part I: North Atlantic basin. J. Climate, 22 , 880904.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., and S-P. Xie, 2003: Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback. J. Climate, 16 , 14041413.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • Patoux, J., X. Yuan, and C. Li, 2009: Satellite-based midlatitude cyclone statistics over the Southern Ocean: 1. Scatterometer-derived pressure fields and storm tracking. J. Geophys. Res., 114 , D04105. doi:10.1029/2008JD010873.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., G. Grell, and Y-H. Kuo, 1993: The ERICA IOP 5 storm. Part II: Sensitivity tests and further diagnosis based on model output. Mon. Wea. Rev., 121 , 15951612.

    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S-P. Xie, 2007: Mapping high sea winds from space: A global climatology. Bull. Amer. Meteor. Soc., 88 , 19651978.

  • Simmons, A. J., and J. K. Gibson, 2000: The ERA-40 project plan. ECMEF ERA-40 Project Rep. Series 1, 63 pp.

  • Simpson, J., C. Kummerow, W-K. Tao, and R. F. Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60 , 1936.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45 , 274319.

  • Song, Q., P. Cornillon, and T. Hara, 2006: Surface wind response to oceanic fronts. J. Geophys. Res., 111 , C12006. doi:10.1029/2006JC003680.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sweet, W., R. Fett, J. Kerling, and P. LaViolette, 1981: Air-sea interaction effects in the lower troposphere across the north wall of the Gulf Stream. Mon. Wea. Rev., 109 , 10421052.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Vera, C. S., P. K. Vigliarolo, and E. H. Berbery, 2002: Cold season synoptic-scale waves over subtropical South America. Mon. Wea. Rev., 130 , 684699.

    • Search Google Scholar
    • Export Citation
  • Vukovich, F. M., J. W. Dunn, and B. W. Crissman, 1991: Aspects of the evolution of the marine boundary layer during the cold-air outbreaks off the southeast coast of the United States. Mon. Wea. Rev., 119 , 22522278.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., G-H. Lim, and M. L. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tacks and baroclinic waveguides. J. Atmos. Sci., 45 , 439462.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2 , 14921499.

    • Search Google Scholar
    • Export Citation
  • Weissman, D. E., M. A. Bourassa, and J. Tongue, 2002: Effects of rain rate and wind magnitude on SeaWinds scatterometer wind speed errors. J. Atmos. Oceanic Technol., 19 , 738746.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., and D. Battisti, 2004: Why do baroclinic waves tilt poleward with height? J. Atmos. Sci., 61 , 14541460.

  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88 , 527539.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 3 3 3

The Signature of the Midlatitude Tropospheric Storm Tracks in the Surface Winds

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
  • | 2 School of Oceanography, University of Washington, Seattle, Washington
  • | 3 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
  • | 4 Applied Physics Laboratory, University of Washington, Seattle, Washington
Restricted access

Abstract

Storm-track analysis is applied to the meridional winds at 10 m and 850 hPa for the winters of 1999–2006. The analysis is focused on the North Atlantic and North Pacific Ocean basins and the Southern Ocean spanning the region south of the Indian Ocean. The spatial patterns that emerge from the analysis of the 850-hPa winds are the typical free-tropospheric storm tracks. The spatial patterns that emerge from the analysis of the surface winds differ from the free-tropospheric storm tracks. The spatial differences between the surface and free-tropospheric storm tracks can be explained by the influence of the spatial variability in the instability of the atmospheric boundary layer. Strongly unstable boundary layers allow greater downward mixing of free-tropospheric momentum (momentum mixing), and this may be the cause of the stronger surface storm tracks in regions with greater instability in the time mean. Principal component analysis suggests that the basin-scale variability that is reflected in the storm-track signature is the same for the free-tropospheric and surface winds. Separating the data based on the boundary layer stability shows that the surface storm track has a local maximum in the region of maximum instability, even when there is no local maximum in the free-tropospheric storm track above the region. The spatial patterns of the surface storm tracks suggest a positive feedback for storm development as follows: 1) an existing storm generates strong free-tropospheric wind variability, 2) the momentum mixing of the unstable boundary layers acts to increase the ocean–atmosphere energy fluxes, and 3) the fluxes precondition the lower atmosphere for subsequent storm development.

Corresponding author address: James F. Booth, Department of Atmospheric Sciences, University of Washington, 408 ATG Bldg., Box 351640, Seattle, WA 98195-1640. Email: jbooth@atmos.washington.edu

This article included in the CLIVAR - Western Boundary Currents special collection.

Abstract

Storm-track analysis is applied to the meridional winds at 10 m and 850 hPa for the winters of 1999–2006. The analysis is focused on the North Atlantic and North Pacific Ocean basins and the Southern Ocean spanning the region south of the Indian Ocean. The spatial patterns that emerge from the analysis of the 850-hPa winds are the typical free-tropospheric storm tracks. The spatial patterns that emerge from the analysis of the surface winds differ from the free-tropospheric storm tracks. The spatial differences between the surface and free-tropospheric storm tracks can be explained by the influence of the spatial variability in the instability of the atmospheric boundary layer. Strongly unstable boundary layers allow greater downward mixing of free-tropospheric momentum (momentum mixing), and this may be the cause of the stronger surface storm tracks in regions with greater instability in the time mean. Principal component analysis suggests that the basin-scale variability that is reflected in the storm-track signature is the same for the free-tropospheric and surface winds. Separating the data based on the boundary layer stability shows that the surface storm track has a local maximum in the region of maximum instability, even when there is no local maximum in the free-tropospheric storm track above the region. The spatial patterns of the surface storm tracks suggest a positive feedback for storm development as follows: 1) an existing storm generates strong free-tropospheric wind variability, 2) the momentum mixing of the unstable boundary layers acts to increase the ocean–atmosphere energy fluxes, and 3) the fluxes precondition the lower atmosphere for subsequent storm development.

Corresponding author address: James F. Booth, Department of Atmospheric Sciences, University of Washington, 408 ATG Bldg., Box 351640, Seattle, WA 98195-1640. Email: jbooth@atmos.washington.edu

This article included in the CLIVAR - Western Boundary Currents special collection.

Save