• Ackerman, T. P., K. Liou, F. P. J. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45 , 16061623.

  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78 , 21972213.

  • Aves, S. L., and R. H. Johnson, 2008: The diurnal cycle of convection over the northern South China Sea during the South China Sea Monsoon Experiment. J. Meteor. Soc. Japan, 86 , 919934.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. H. Berbery, 1998: Evolution of the North American Monsoon System. J. Climate, 11 , 22382257.

  • Bechtold, P., J. P. Chaboureau, A. Beljaars, A. K. Betts, and M. Kohler, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130 , 31193137.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and C. Jakob, 2002: Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. J. Geophys. Res., 107 , 8045. doi:10.1029/2001JD000427.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm-season precipitation episodes. J. Atmos. Sci., 59 , 20332056.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation and lifecycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123 , 357388.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and R. H. Johnson, 2006: Contrasting characteristics of convection over the northern and southern South China Sea during SCSMEX. Mon. Wea. Rev., 134 , 10411062.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and R. H. Johnson, 2008: Diurnal cycle of surface flows during 2004 NAME and comparison to model reanalysis. J. Climate, 21 , 38903913.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, P. T. Haertel, and J. Wang, 2003: Corrected TOGA COARE sounding humidity data: Impact on diagnosed properties of convection and climate over the warm pool. J. Climate, 16 , 23702384.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, and J. Wang, 2009: Correction of humidity biases in Vaisala RS80-H sondes during NAME. J. Atmos. Oceanic Technol., 26 , 17631780.

    • Search Google Scholar
    • Export Citation
  • Dai, A. G., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104 , (D6). 63776402.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., and J. Murillo, 2008: The Pan-American Climate Studies Sounding Network. Bull. Amer. Meteor. Soc., 89 , 17091725.

  • Douglas, M. W., R. A. Maddox, K. Howard, and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6 , 16651677.

  • Fuller, R. D., and D. J. Stensrud, 2000: The relationship between tropical easterly waves and surges over the Gulf of California during the North American monsoon. Mon. Wea. Rev., 128 , 29832989.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., J. C. Leal, C. J. Watts, W. J. Shuttleworth, and J. Garatuza-Payan, 2003: Preliminary diagnostics from a new event-based monitoring system network in support of the North American monsoon experiment (NAME). J. Hydrometeor., 4 , 974981.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., C. J. Watts, J. Garatuza-Payan, and J. Cesar-Rodriguez, 2007: Spatial and temporal patterns of precipitation intensity as observed by the NAME event rain gauge network from 2002 to 2004. J. Climate, 20 , 17341750.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson, 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105 , 104188.

  • Gutzler, D. S., and Coauthors, 2005: The North American Monsoon Model Assessment Project: Integrating numerical modeling into a field-based process study. Bull. Amer. Meteor. Soc., 86 , 14231429.

    • Search Google Scholar
    • Export Citation
  • Higgins, W., and Coauthors, 2006: The NAME 2004 field campaign and modeling strategy. Bull. Amer. Meteor. Soc., 87 , 7994.

  • Houze Jr., R. A., 1982: Cloud clusters and large-scale vertical motions in the Tropics. J. Meteor. Soc. Japan, 60 , 396410.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 3855.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., V. Kousky, and R. Joyce, 2005: Diurnal cycle of precipitation determined from the CMORPH high spatial and temporal resolution global precipitation analyses. J. Geophys. Res., 110 , D23105. doi:10.1029/2005JD006156.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 2006: Mesoscale processes. The Asian Monsoon, B. Wang, Ed., Praxis-Publishing Ltd., 331–356.

  • Johnson, R. H., and P. E. Ciesielski, 2000: Rainfall and radiative heating rate estimates from TOGA-COARE atmospheric budgets. J. Atmos. Sci., 57 , 14971514.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12 , 23972433.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, B. D. McNoldy, P. J. Rogers, and R. K. Taft, 2007: Multiscale variability of the flow during the North American Monsoon Experiment. J. Climate, 20 , 16281648.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. A. Randall, 2006: High-resolution simulations of shallow-to-deep convection transition over land. J. Atmos. Sci., 63 , 34213436.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31 , L10101. doi:10.1029/2004GL019601.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47 , RG2003. doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., 1963: The diurnal precipitation change over the sea. J. Atmos. Sci., 20 , 551556.

  • Krishnamurti, T. N., 1971: Tropical east–west circulations during the northern monsoon. J. Atmos. Sci., 28 , 13421347.

  • Krishnamurti, T. N., and C. M. Kishtawal, 2000: A pronounced continental-scale diurnal mode of the Asian summer monsoon. Mon. Wea. Rev., 128 , 462473.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., A. Ahijevych, S. W. Nesbitt, R. E. Carbone, S. A. Rutledge, and R. Cifelli, 2007: Radar-observed characteristics of precipitating systems during NAME 2004. J. Climate, 20 , 17131733.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. L. Stephens, 2003: The tropical atmospheric energy budget from the TRMM perspective. Part I: Algorithm and uncertainties. J. Climate, 16 , 19671985.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. L. Stephens, 2007: The tropical atmospheric energy budget from the TRMM perspective. Part II: Evaluating GCM representations of the sensitivity of regional energy and water cycles to the 1998–99 ENSO cycle. J. Climate, 20 , 45484571.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. McGarragh, 2010: A 10-year climatology of tropical radiative heating and its vertical structure from TRMM observations. J. Climate, 23 , 519541.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., 2002: Progress in scatterometer application. J. Oceanogr., 58 , 121136.

  • Luo, H., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112 , 966989.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal offshore convection. Mon. Wea. Rev., 131 , 830844.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., E. Rogers, W. Ebisuzaki, R. W. Higgins, J. Woollen, and M. L. Carrera, 2007: Influence of the North American Monsoon Experiment (NAME) 2004 enhanced soundings on NCEP operational analyses. J. Climate, 20 , 18211842.

    • Search Google Scholar
    • Export Citation
  • Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16 , 834848.

  • Negri, A. J., R. F. Adler, R. A. Maddox, K. W. Howard, and P. R. Keehn, 1993: A regional rainfall climatology over Mexico and the Southwest United States derived from passive microwave and geosynchronous infrared data. J. Climate, 6 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., D. J. Gochis, and T. J. Lang, 2008: The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental during the North American Monsoon Experiment: Implications for precipitation estimation in complex terrain. J. Hydrometeor., 9 , 728743.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1983: Observational study of heat sources over the eastern Tibetan Plateau during the summer monsoon. J. Meteor. Soc. Japan, 61 , 590605.

    • Search Google Scholar
    • Export Citation
  • Nuss, W. A., and D. W. Titley, 1994: Use of multiquadric interpolation for meteorological objective analysis. Mon. Wea. Rev., 122 , 16111631.

    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., 1970: Alternative solutions to the classical vertical velocity problem. J. Appl. Meteor., 9 , 197203.

  • Randall, D. A., Harshvardhan, and D. A. Dazlich, 1991: Diurnal variability of the hydrological cycle in a general circulation model. J. Atmos. Sci., 48 , 4062.

    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., S. A. Rutledge, T. J. Lang, P. E. Ciesielski, and S. M. Saleeby, 2008: Elevation-dependent trends in precipitation observed during NAME. Mon. Wea. Rev., 136 , 49624979.

    • Search Google Scholar
    • Export Citation
  • Slingo, J., P. Inness, R. Neale, S. Woolnough, and G-Y. Yang, 2003: Scale interactions on diurnal to seasonal timescales and their relevance to model systematic errors. Ann. Geophys., 46 , 139155.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and T. Yasunari, 2006: Workshop on monsoon climate systems: Toward better prediction of the monsoon. Bull. Amer. Meteor. Soc., 87 , 13991403.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., R. L. Gall, S. L. Mullen, and K. W. Howard, 1995: Model climatology of the Mexican monsoon. J. Climate, 8 , 17751793.

    • Search Google Scholar
    • Export Citation
  • Tang, M., and E. R. Reiter, 1984: Plateau monsoons of the Northern Hemisphere: A comparison between North America and Tibet. Mon. Wea. Rev., 112 , 617637.

    • Search Google Scholar
    • Export Citation
  • Tucker, D. F., 1999: The summer plateau low pressure system of Mexico. J. Climate, 12 , 10021015.

  • Wallace, J., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103 , 406419.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and G. L. Stephens, 1980: Tropical upper-tropospheric extended clouds: Inferences from winter MONEX. J. Atmos. Sci., 37 , 15211541.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and Coauthors, 2002: The JASMINE pilot study. Bull. Amer. Meteor. Soc., 83 , 16031630.

  • Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129 , 784801.

  • Zuidema, P., C. Fairall, L. Hartten, J. Hare, and D. Wolfe, 2007: On air–sea interaction at the mouth of the Gulf of California. J. Climate, 20 , 16491661.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 43 43 43
PDF Downloads 13 13 13

Diurnal Cycle of Convection during the 2004 North American Monsoon Experiment

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
Restricted access

Abstract

The diurnal cycle of summer monsoon convection in the coastal, mountainous region of northwestern Mexico is investigated using data from the 2004 North American Monsoon Experiment (NAME). Data from a special sounding network consisting of research and operational sites have been quality controlled and combined with surface, wind profiler, and pibal observations to create a gridded dataset over the NAME domain. This study concentrates on results from the interior portion of the NAME sounding network, where gridded analysis fields are independent of model data. Special attention is given to surface and pibal observations along the western slope of the Sierra Madre Occidental (SMO) in order to obtain an optimal analysis of the diurnally varying slope flows.

Results show a prominent sea-breeze–land-breeze cycle along the western slopes of the SMO. There is a deep return flow above the afternoon sea breeze as a consequence of the elevated SMO immediately to the east. The upslope flow along the western slope of the SMO is delayed until late morning, likely in response to early morning low clouds over the SMO crest and reduced morning insolation over the west-facing slopes. The diurnal cycle of the net radiative heating rate is characterized by a net cooling during most of the daytime except for net heating in the lower and upper troposphere at midday. The diurnal cycle of the apparent heat source Q1 minus the radiative heating rate QR (providing a measure of net condensational heating) and the apparent moisture sink Q2 over the SMO is indicative of shallow convection around noon, deep convection at 1800 LT, evolving to stratiform precipitation by midnight, consistent with the radar-observed diurnal evolution of precipitation over this coastal mountainous region as well as the typical evolution of tropical convective systems across a wide range of spatial and temporal scales. Convection over the Gulf of California is strikingly different from that over land, namely, heating and moistening are confined principally to the lower troposphere below 700 hPa, peaking during the nighttime hours.

Corresponding author address: Richard H. Johnson, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: johnson@atmos.colostate.edu

This article included in the TRMM Diabatic Heating special collection.

Abstract

The diurnal cycle of summer monsoon convection in the coastal, mountainous region of northwestern Mexico is investigated using data from the 2004 North American Monsoon Experiment (NAME). Data from a special sounding network consisting of research and operational sites have been quality controlled and combined with surface, wind profiler, and pibal observations to create a gridded dataset over the NAME domain. This study concentrates on results from the interior portion of the NAME sounding network, where gridded analysis fields are independent of model data. Special attention is given to surface and pibal observations along the western slope of the Sierra Madre Occidental (SMO) in order to obtain an optimal analysis of the diurnally varying slope flows.

Results show a prominent sea-breeze–land-breeze cycle along the western slopes of the SMO. There is a deep return flow above the afternoon sea breeze as a consequence of the elevated SMO immediately to the east. The upslope flow along the western slope of the SMO is delayed until late morning, likely in response to early morning low clouds over the SMO crest and reduced morning insolation over the west-facing slopes. The diurnal cycle of the net radiative heating rate is characterized by a net cooling during most of the daytime except for net heating in the lower and upper troposphere at midday. The diurnal cycle of the apparent heat source Q1 minus the radiative heating rate QR (providing a measure of net condensational heating) and the apparent moisture sink Q2 over the SMO is indicative of shallow convection around noon, deep convection at 1800 LT, evolving to stratiform precipitation by midnight, consistent with the radar-observed diurnal evolution of precipitation over this coastal mountainous region as well as the typical evolution of tropical convective systems across a wide range of spatial and temporal scales. Convection over the Gulf of California is strikingly different from that over land, namely, heating and moistening are confined principally to the lower troposphere below 700 hPa, peaking during the nighttime hours.

Corresponding author address: Richard H. Johnson, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: johnson@atmos.colostate.edu

This article included in the TRMM Diabatic Heating special collection.

Save