• AchutaRao, K., and K. R. Sperber, 2002: Simulation of the El Niño Southern Oscillation: Results from the Coupled Model Intercomparison Project. Climate Dyn., 19 , 191209.

    • Search Google Scholar
    • Export Citation
  • An, S-I., 2009: A review of interdecadal changes in the nonlinearity of the El Niño–Southern Oscillation. Theor. Appl. Climatol., 97 , 2940.

    • Search Google Scholar
    • Export Citation
  • An, S-I., and F-F. Jin, 2001: Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Climate, 14 , 34213432.

    • Search Google Scholar
    • Export Citation
  • An, S-I., F-F. Jin, and I-S. Kang, 1999: The role of zonal advection feedback in phase transition and growth of ENSO in the Cane-Zebiak model. J. Meteor. Soc. Japan, 77 , 11511160.

    • Search Google Scholar
    • Export Citation
  • An, S-I., Y-G. Ham, J-S. Kug, F-F. Jin, and I-S. Kang, 2005: El Niño–La Niña asymmetry in the Coupled Model Intercomparison Project. J. Climate, 18 , 26172627.

    • Search Google Scholar
    • Export Citation
  • An, S-I., J-S. Kug, A. Timmermann, I-S. Kang, and O. Timm, 2007: The influence of ENSO on the generation of decadal variability in the North Pacific. J. Climate, 20 , 667680.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112 , C11007. doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. Iizuka, S. A. Rao, N. H. Saji, and W-J. Lee, 2009: Processes and boreal summer impacts of the 2004 El Niño Modoki: An AGCM study. Geophys. Res. Lett., 36 , L04703. doi:10.1029/2008GL036313.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45 , 28892919.

    • Search Google Scholar
    • Export Citation
  • Bejarano, L., and F-F. Jin, 2008: Coexistence of equatorial coupled modes of ENSO. J. Climate, 21 , 30513067.

  • Clarke, A. J., 1994: Why are surface equatorial ENSO winds anomalously westerly under anomalous large-scale convection? J. Climate, 7 , 16231627.

    • Search Google Scholar
    • Export Citation
  • Davey, M., and Coauthors, 2002: STOIC: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18 , 403420.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 634674.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19 , 675697.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1 , 4579.

  • Gualdi, S., A. Navarra, E. Guilyardi, and P. Delecluse, 2003: Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Ann. Geophys., 46 , 126.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., P. Delecluse, S. Gualdi, and A. Navarra, 2003: Mechanisms for ENSO phase change in a coupled GCM. J. Climate, 16 , 11411158.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., and Coauthors, 2004: Representing El Niño in coupled ocean–atmosphere GCMs: The dominant role of the atmospheric component. J. Climate, 17 , 46234629.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., D. B. Stephenson, and K. R. Sperber, 2003: Probability-based methods for quantifying nonlinearity in the ENSO. Climate Dyn., 20 , 241256.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10 , 17691786.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1996: Tropical ocean–atmosphere interaction, the Pacific cold tongue, and the El Niño–Southern Oscillation. Science, 274 , 7678.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Jin, F-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54 , 830847.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 2001: Low-frequency modes of tropical ocean dynamics. J. Climate, 14 , 38743881.

  • Jin, F-F., and S-I. An, 1999: Thermocline and zonal advection feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett., 26 , 29892992.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., J-S. Kug, S-I. An, and I-S. Kang, 2003: A near-annual coupled ocean–atmosphere mode in the equatorial Pacific ocean. Geophys. Res. Lett., 30 , 1080. doi:10.1029/2002GL015983.

    • Search Google Scholar
    • Export Citation
  • Kang, I-S., S-I. An, and F-F. Jin, 2001: A systematic approximation of the SST anomaly equation for ENSO. J. Meteor. Soc. Japan, 79 , 110.

    • Search Google Scholar
    • Export Citation
  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22 , 615632.

  • Kim, D., J-S. Kug, I-S. Kang, F-F. Jin, and A. T. Wittenberg, 2008: Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Climate Dyn., 31 , 213226. doi:10.1007/s00382-007-0348-4.

    • Search Google Scholar
    • Export Citation
  • Kug, J-S., I-S. Kang, and S-I. An, 2003: Symmetric and antisymmetric mass exchanges between the equatorial and off-equatorial Pacific associated with ENSO. J. Geophys. Res., 108 , 3284. doi:10.1029/2002JC001671.

    • Search Google Scholar
    • Export Citation
  • Kug, J-S., B. P. Kirtman, and I-S. Kang, 2006a: Interactive feedback between ENSO and the Indian Ocean in an interactive coupled model. J. Climate, 19 , 63716381.

    • Search Google Scholar
    • Export Citation
  • Kug, J-S., T. Li, S-I. An, I-S. Kang, J-J. Luo, S. Masson, and T. Yamagata, 2006b: Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33 , L09710. doi:10.1029/2005GL024916.

    • Search Google Scholar
    • Export Citation
  • Kug, J-S., S-I. An, Y-G. Ham, and I-S. Kang, 2009a: Changes in El Niño and La Niña teleconnections over North Pacific–America in the global warming simulations. Theor. Appl. Climatol., doi:10.1007/s00704-009-0183-0, in press.

    • Search Google Scholar
    • Export Citation
  • Kug, J-S., F-F. Jin, and S-I. An, 2009b: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22 , 14991515.

    • Search Google Scholar
    • Export Citation
  • Kug, J-S., K-P. Sooraj, D. Kim, I-S. Kang, F-F. Jin, Y. N. Takayabu, and M. Kimoto, 2009c: Simulation of state-dependent high-frequency atmospheric variability associated with ENSO. Climate Dyn., 32 , 635648. doi:10.1007/s00382-008-0434-2.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005a: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32 , L13705. doi:10.1029/2005GL022738.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005b: Global seasonal temperature and precipitation anomalies during El Nino autumn and winter. Geophys. Res. Lett., 32 , L16705. doi:10.1029/2005GL022860.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 2001: ENSIP: The El Niño simulation intercomparison project. Climate Dyn., 18 , 255276.

  • Lau, N-C., and M. J. Nath, 2004: Coupled GCM simulation of atmosphere–ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. J. Climate, 17 , 245265.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., and G. A. Vecchi, 2009: Contrasting the termination of moderate and extreme El Niño events in coupled general circulation models. Climate Dyn., doi:10.1007/s00382-009-0562-3, in press.

    • Search Google Scholar
    • Export Citation
  • Lin, S-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132 , 22932307.

  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13 , 35513559.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2001: Interannual variability in warm water volume transports in the equatorial Pacific during 1993–99. J. Phys. Oceanogr., 31 , 13241345.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , (C7). 1426114290.

    • Search Google Scholar
    • Export Citation
  • Picaut, J., F. Masia, and Y. du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277 , 663666.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110 , 354384.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., P. Friederichs, and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J. Climate, 17 , 37613774.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., 2003: Decadal ENSO amplitude modulations: A nonlinear paradigm. Global Planet. Change, 37 , 135156.

  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441 , 7376. doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. Von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103 , 1416914240.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2000: On the atmospheric responses to tropical Pacific heating during the mature phase of El Niño. J. Atmos. Sci., 57 , 37673781.

    • Search Google Scholar
    • Export Citation
  • Wang, C., R. H. Weisberg, and J. I. Virmani, 1999: Western Pacific interannual variability associated with the El Niño–Southern Oscillation. J. Geophys. Res., 104 , 51315149.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and C. Wang, 1997: A western Pacific oscillator paradigm for the El Niño–Southern Oscillation. Geophys. Res. Lett., 24 , 779782.

    • Search Google Scholar
    • Export Citation
  • Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29 , 113129. doi:10.1007/s00382-007-0234-0.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, N-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19 , 698722.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Kirtman, 2004a: Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17 , 40194031.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2004b: Biennial oscillation of the monsoon–ENSO system in an interactive ensemble coupled GCM. J. Climate, 17 , 16231640.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., J-S. Kug, B. Dewitte, M-H. Kwon, B. Kirtman, and F-F. Jin, 2009: El Niño in a changing climate. Nature, 461 , 511515.

  • Yu, J-Y., and C. R. Mechoso, 2001: Coupled atmosphere–ocean GCM study of the ENSO cycle. J. Climate, 14 , 23292350.

  • Yu, J-Y., C. R. Mechoso, J. C. McWilliams, and A. Arakawa, 2002: Impacts of the Indian Ocean on the ENSO cycle. Geophys. Res. Lett., 29 , 1204. doi:10.1029/2001GL014098.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 35
PDF Downloads 18 18 18

Warm Pool and Cold Tongue El Niño Events as Simulated by the GFDL 2.1 Coupled GCM

View More View Less
  • 1 Korea Ocean Research and Development Institute, Ansan, South Korea
  • | 2 Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
  • | 3 School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii
  • | 4 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
Restricted access

Abstract

Recent studies report that two types of El Niño events have been observed. One is the cold tongue (CT) El Niño, which is characterized by relatively large sea surface temperature (SST) anomalies in the eastern Pacific, and the other is the warm pool (WP) El Niño, in which SST anomalies are confined to the central Pacific. Here, both types of El Niño events are analyzed in a long-term coupled GCM simulation. The present model simulates the major observed features of both types of El Niño, incorporating the distinctive patterns of each oceanic and atmospheric variable. It is also demonstrated that each type of El Niño has quite distinct dynamic processes, which control their evolutions. The CT El Niño exhibits strong equatorial heat discharge poleward and thus the dynamical feedbacks control the phase transition from a warm event to a cold event. On the other hand, the discharge process in the WP El Niño is weak because of its spatial distribution of ocean dynamic field. The positive SST anomaly of WP El Niño is thermally damped through the intensified evaporative cooling.

Corresponding author address: Prof. Soon-Il An, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, South Korea. Email: sian@yonsei.ac.kr

Abstract

Recent studies report that two types of El Niño events have been observed. One is the cold tongue (CT) El Niño, which is characterized by relatively large sea surface temperature (SST) anomalies in the eastern Pacific, and the other is the warm pool (WP) El Niño, in which SST anomalies are confined to the central Pacific. Here, both types of El Niño events are analyzed in a long-term coupled GCM simulation. The present model simulates the major observed features of both types of El Niño, incorporating the distinctive patterns of each oceanic and atmospheric variable. It is also demonstrated that each type of El Niño has quite distinct dynamic processes, which control their evolutions. The CT El Niño exhibits strong equatorial heat discharge poleward and thus the dynamical feedbacks control the phase transition from a warm event to a cold event. On the other hand, the discharge process in the WP El Niño is weak because of its spatial distribution of ocean dynamic field. The positive SST anomaly of WP El Niño is thermally damped through the intensified evaporative cooling.

Corresponding author address: Prof. Soon-Il An, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, South Korea. Email: sian@yonsei.ac.kr

Save