• Allan, R. P., A. Slingo, and V. Ramaswamy, 2002: Analysis of moisture variability in the European Centre for Medium-Range Weather Forecasts 15-year reanalysis over the tropical oceans. J. Geophys. Res., 107 , 4230. doi:10.1029/2001JD001132.

    • Search Google Scholar
    • Export Citation
  • Andersson, E., and Coauthors, 2007: Analysis and forecast impact of the main humidity observing systems. Quart. J. Roy. Meteor. Soc., 133 , 14731485.

    • Search Google Scholar
    • Export Citation
  • Basili, P., S. Bonafoni, R. Ferrara, P. Ciotti, E. Fionda, and R. Arnbrosini, 2001: Atmospheric water vapor retrieval by means of both a GPS network and a microwave radiometer during an experimental campaign in Cagliari, Italy, in 1999. IEEE Trans. Geosci. Remote Sens., 39 , 24362443.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., and Coauthors, 2003: The use of GPS measurements for water vapor determination. Bull. Amer. Meteor. Soc., 84 , 12491258.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and S. Hagemann, 2004: Sensitivity of large-scale atmospheric analyses to humidity observations and its impact on the global water cycle and tropical and extratropical weather systems in ERA40. Tellus, 56A , 202217.

    • Search Google Scholar
    • Export Citation
  • Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of the atmospheric water vapor using the Global Positioning System. J. Geophys. Res., 97 , (D14). 1578715801.

    • Search Google Scholar
    • Export Citation
  • Bevis, M., S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, and R. H. Ware, 1994: GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteor., 33 , 379386.

    • Search Google Scholar
    • Export Citation
  • Beyerle, G., K. Hocke, J. Wickert, T. Schmidt, C. Marquardt, and C. Reigber, 2002: GPS radio occultations with CHAMP: A radio holographic analysis of GPS signal propagation in the troposphere and surface reflections. J. Geophys. Res., 107 , 4802. doi:10.1029/2001JD001402.

    • Search Google Scholar
    • Export Citation
  • Beyerle, G., J. Wickert, T. Schmidt, and C. Reigber, 2004: Atmospheric sounding by global navigation satellite system radio occultation: An analysis of the negative refractivity bias using CHAMP observations. J. Geophys. Res., 109 , D01106. doi:10.1029/2003JD003922.

    • Search Google Scholar
    • Export Citation
  • Bock, O., C. Keil, E. Richard, C. Flamant, and M. N. Bouin, 2005: Validation of precipitable water from ECMWF model analyses with GPS and radiosonde data during the MAP SOP. Quart. J. Roy. Meteor. Soc., 131 , 30133036.

    • Search Google Scholar
    • Export Citation
  • Boehm, J., B. Werl, and H. Schuh, 2006: Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res., 111 , B02406. doi:10.1029/2005JB003629.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J-P., A. Chédin, and N. A. Scott, 1998: Remote sensing of the vertical distribution of atmospheric water vapor from the TOVS observations. Method and validation. J. Geophys. Res., 103 , 87438752.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., B. Navascues, G. Ruffini, P. Elósegui, A. Rius, and J. Vilà, 2000: The use of GPS to validate NWP systems: The HIRLAM model. J. Atmos. Oceanic Technol., 17 , 773787.

    • Search Google Scholar
    • Export Citation
  • Dach, R., U. Hugentobler, P. Fridez, and M. Meindl, Eds. 2007: Bernese GPS Software version 5.0. Astronomical Institute, University of Bern, 612 pp. [Available online at http://www.bernese.unibe.ch/docs/DOCU50.pdf].

    • Search Google Scholar
    • Export Citation
  • Deblonde, G., S. Macpherson, Y. Mireault, and P. Héroux, 2005: Evaluation of GPS precipitable water over Canada and the IGS network. J. Appl. Meteor., 44 , 153166.

    • Search Google Scholar
    • Export Citation
  • Deeter, M. N., 2007: A new satellite retrieval method for precipitable water vapor over land and ocean. Geophys. Res. Lett., 34 , L02815. doi:10.1029/2006GL028019.

    • Search Google Scholar
    • Export Citation
  • Divakarla, M. G., C. D. Barnet, M. D. Goldberg, L. M. McMillin, E. Maddy, W. Wolf, L. Zhou, and X. Liu, 2006: Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res., 111 , D09S15. doi:10.1029/2005JD006116.

    • Search Google Scholar
    • Export Citation
  • Fritsche, M., R. Dietrich, C. Knöfel, A. Rulke, S. Vey, M. Rothacher, and P. Steigenberger, 2005: Impact of higher-order ionospheric terms on GPS estimates. Geophys. Res. Lett., 32 , L23311. doi:10.1029/2005GL024342.

    • Search Google Scholar
    • Export Citation
  • Gaffen, D. J., A. Robock, and W. P. Elliott, 1992: Annual cycles of tropospheric water vapor. J. Geophys. Res., 97 , (D16). 1818518193.

    • Search Google Scholar
    • Export Citation
  • Garand, L., C. Grassotti, J. Hallé, and G. L. Klein, 1992: On differences in radiosonde humidity-reporting practices and their implications for numerical weather prediction and remote sensing. Bull. Amer. Meteor. Soc., 73 , 14171423.

    • Search Google Scholar
    • Export Citation
  • Gendt, G., G. Dick, C. Reigber, M. Tomassini, Y. Liu, and M. Ramatschi, 2004: Near real time GPS water vapor monitoring for numerical weather prediction in Germany. J. Meteor. Soc. Japan, 82 , 361380.

    • Search Google Scholar
    • Export Citation
  • Görres, B., J. Campbell, M. Becker, and M. Siemes, 2006: Absolute calibration of GPS antennas: Laboratory results and comparison with field and robot techniques. GPS Solutions, 10 , 136145.

    • Search Google Scholar
    • Export Citation
  • Gradinarsky, L. P., J. M. Johansson, H. R. Bouma, H. G. Scherneck, and G. Elgered, 2002: Climate monitoring using GPS. Phys. Chem. Earth, 27 , 335340.

    • Search Google Scholar
    • Export Citation
  • Guerova, G., J-M. Bettems, E. Brockmann, and C. Matzler, 2006: Assimilation of COST 716 near-real time GPS data in the nonhydrostatic limited area model used at MeteoSwiss. Meteor. Atmos. Phys., 91 , 149164. doi:10.1007/s00703-005-0110-6.

    • Search Google Scholar
    • Export Citation
  • Gutman, S. I., and S. G. Benjamin, 2001: The role of ground-based GPS meteorological observations in numerical weather prediction. GPS Solutions, 4 , 1624.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., L. Bengtsson, and G. Gendt, 2003: On the determination of atmospheric water vapor from GPS measurements. J. Geophys. Res., 108 , 4678. doi:10.1029/2002JD003235.

    • Search Google Scholar
    • Export Citation
  • Hajj, G. A., and Coauthors, 2004: CHAMP and SAC-C atmospheric occultation results and intercomparisons. J. Geophys. Res., 109 , D06109. doi:10.1029/2003JD003909.

    • Search Google Scholar
    • Export Citation
  • Jaldehag, R. T. K., J. M. Johansson, J. L. Davis, and P. Elósegui, 1996: Geodesy using the Swedish Permanent GPS Network: Effects of snow accumulation on estimates of site positions. Geophys. Res. Lett., 23 , 16011604.

    • Search Google Scholar
    • Export Citation
  • Janes, H. W., R. B. Langley, and S. P. Newby, 1991: Analysis of tropospheric delay prediction models: Comparisons with ray-tracing and implications for GPS relative positioning. Bull. Geod., 65 , 151161.

    • Search Google Scholar
    • Export Citation
  • Johansson, J. M., 1998: GPS antenna and site effects. Advances in Positioning and Reference Frames, F. Brunner, Ed., Springer, 229–235.

    • Search Google Scholar
    • Export Citation
  • Johnsen, K. P., and B. Rockel, 2001: Validation of the NWP model HRM with ground-based GPS data. Phys. Chem. Earth, 26 , 463466.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., and Coauthors, 1991: Recent changes implemented into the Global Forecast System at NMC. Wea. Forecasting, 6 , 425435.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Karbou, F., F. Aires, C. Prigent, and L. Eymard, 2005: Potential of Advanced Microwave Sounding Unit-A (AMSU-A) and AMSU-B measurements for atmospheric temperature and humidity profiling over land. J. Geophys. Res., 110 , D07109. doi:10.1029/2004JD005318.

    • Search Google Scholar
    • Export Citation
  • Kedar, S., G. A. Hajj, B. D. Wilson, and M. B. Heflin, 2003: The effect of the second order GPS ionospheric correction on receiver positions. Geophys. Res. Lett., 30 , 1829. doi:10.1029/2003GL017639.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Köpken, C., 2001: Validation of integrated water vapor from numerical models using ground-based GPS, SSM/I, and water vapor radiometer measurements. J. Appl. Meteor., 40 , 11051117.

    • Search Google Scholar
    • Export Citation
  • Kumar, B., R. S. C. Dutta, and H. Shah, 1992: On the design of FIR digital differentiators which are maximally linear at the frequency π/p, p ∈ {positive integers}. IEEE Trans. Signal. Process., 40 , 23342338. doi:10.1109/78.157235.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., and G. A. Hajj, 2001: A comparison of water vapor derived from GPS occultations and global weather analyses. J. Geophys. Res., 106 , (D1). 11131138.

    • Search Google Scholar
    • Export Citation
  • Larsen, G., K. Lauritsen, F. Rubek, and M. Sørensen, 2005: Processing of CHAMP radio occultation data using GRAS SAF software. Earth Observation with CHAMP: Results from Three Years in Orbit, C. Reigber et al., Eds., Springer Verlag, 543–548.

    • Search Google Scholar
    • Export Citation
  • Li, Z., J-P. Muller, and P. Cross, 2003: Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurements. J. Geophys. Res., 108 , 4651. doi:10.1029/2003JD003372.

    • Search Google Scholar
    • Export Citation
  • Liou, Y. A., C. Y. Huang, and Y. T. Teng, 2000: Precipitable water observed by ground-based GPS receivers and microwave radiometry. Earth Planets Space, 52 , 445450.

    • Search Google Scholar
    • Export Citation
  • Liou, Y. A., A. G. Pavelyev, J. Wickert, T. Schmidt, and A. A. Pavelyev, 2005: Analysis of atmospheric and ionospheric structures using the GPS/MET and CHAMP radio occultation database: A methodological review. GPS Solutions, 9 , 122143. doi:10.1007/s10291-005-0141-y.

    • Search Google Scholar
    • Export Citation
  • Mader, G. L., 1999: GPS antenna calibration at the National Geodetic Survey. GPS Solutions, 3 , 5058. doi:10.1007/PL00012780.

  • Marquardt, C., K. Labitzke, C. Reigber, T. Schmidt, and J. Wickert, 2001: An assessment of the quality of GPS/MET radio limb soundings during February 1997. Phys. Chem. Earth, 26 , 125130.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283 , 950954.

  • Menge, F., G. Seeber, C. Völksen, G. Wübbena, and M. Schmitz, 1998: Results of absolute field calibration of GPS antenna PCV. Proc. 11th Int. Tech. Meeting of the Satellite Division of the Institute of Navigation, ION, Nashville, TN, 31–38. [Available online at http://www.ife.uni-hannover.de/aoa-kalibration/ion98.pdf].

    • Search Google Scholar
    • Export Citation
  • Miao, J., K. Kunzi, G. Heygster, T. A. Lachlan-Cope, and J. Turner, 2001: Atmospheric water vapor over Antarctica derived from Special Sensor Microwave/Temperature 2 data. J. Geophys. Res., 106 , 1018710203.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, M. L., H. Vömel, D. N. Whiteman, B. M. Lesht, F. J. Schmidlin, and F. Russo, 2006: Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. J. Geophys. Res., 111 , D09S10. doi:10.1029/2005JD006083.

    • Search Google Scholar
    • Export Citation
  • Niell, A. E., 1996: Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res., 101 , (B2). 32273246.

  • Niell, A. E., 2000: Improved atmospheric mapping functions for VLBI and GPS. Earth Planets Space, 52 , 699702.

  • Niell, A. E., 2001: Preliminary evaluation of atmospheric mapping functions based on numerical weather models. Phys. Chem. Earth, 26 , 475480. doi:10.1016/S1464-1895(01)00087-4.

    • Search Google Scholar
    • Export Citation
  • Niell, A. E., A. J. Coster, F. S. Solheim, V. B. Mendes, P. C. Toor, R. B. Langley, and C. A. Upham, 2001: Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J. Atmos. Oceanic Technol., 18 , 830850.

    • Search Google Scholar
    • Export Citation
  • Okamura, O., and F. Kimura, 2003: Behavior of GPS-derived precipitable water vapor in the mountain lee after the passage of a cold front. Geophys. Res. Lett., 30 , 1746. doi:10.1029/2003GL017572.

    • Search Google Scholar
    • Export Citation
  • Park, K-D., R. S. Nerem, M. S. Schenewerk, and J. L. Davis, 2004: Site-specific multipath characteristics of global IGS and CORS GPS sites. J. Geod., 77 , 799803. doi:10.1007/s00190-003-0359-9.

    • Search Google Scholar
    • Export Citation
  • Philipona, R., B. Dürr, A. Ohmura, and C. Ruckstuhl, 2005: Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in Europe. Geophys. Res. Lett., 32 , L19809. doi:10.1029/2005GL023624.

    • Search Google Scholar
    • Export Citation
  • Randel, D. L., T. H. Vonder Haar, M. A. Ringerud, G. L. Stephens, T. J. Greenwald, and C. L. Combs, 1996: A new global water vapor dataset. Bull. Amer. Meteor. Soc., 77 , 12331246.

    • Search Google Scholar
    • Export Citation
  • Rocken, C., T. Van Hove, J. Johnson, F. Solheim, R. Ware, M. Bevis, S. Chiswell, and S. Businger, 1995: GPS/STORM—GPS sensing of atmospheric water vapor for meteorology. J. Atmos. Oceanic Technol., 12 , 468478.

    • Search Google Scholar
    • Export Citation
  • Rocken, C., T. Van Hove, and R. Ware, 1997: Near real-time GPS sensing of atmospheric water vapor. Geophys. Res. Lett., 24 , 32213224.

    • Search Google Scholar
    • Export Citation
  • Saastamoinen, J., 1972: Atmospheric corrections for the troposphere and stratosphere in radio ranging of satellites. The Use of Artificial Satellites for Geodesy, Geophys. Monogr., Vol. 15, Amer. Geophys. Union, 247–251.

    • Search Google Scholar
    • Export Citation
  • Schlittgen, R., and B. H. J. Streitberg, 1999: Zeitreihenanalyse. R. Oldenbourg Verlag, 571 pp.

  • Schmid, R., and M. Rothacher, 2003: Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites. J. Geod., 77 , 440446. doi:10.1007/s00190-003-0339-0.

    • Search Google Scholar
    • Export Citation
  • Schmid, R., M. Rothacher, D. Thaller, and P. Steigenberger, 2005: Absolute phase center corrections of satellite and receiver antennas: Impact on global GPS solutions and estimation of azimuthal phase center variations of the satellite antenna. GPS Solutions, 9 , 283293. doi:10.1007/s10291-005-0134-x.

    • Search Google Scholar
    • Export Citation
  • Schüler, T., 2001: On ground-based GPS tropospheric delay estimation. Ph.D. thesis, Universität der Bundeswehr München, Studiengang Geodäsie und Geoinformation, 364 pp.

  • Schupler, B. R., 2001: The response of GPS antennas—How design, environment, and frequency affect what you see. Phys. Chem. Earth, 26A , 605611.

    • Search Google Scholar
    • Export Citation
  • Smith, T. L., S. G. Benjamin, S. I. Gutman, and S. Sahm, 2007: Short-range forecast impact from assimilation of GPS-IPW observations into the Rapid Update Cycle. Mon. Wea. Rev., 135 , 29142930.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and J. R. Lanzante, 1996: An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor. J. Climate, 9 , 12351250.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., D. D. Turner, B. M. Lesht, and L. M. Miloshevich, 2004: An analysis of satellite, radiosonde, and lidar observations of upper tropospheric water vapor from the Atmospheric Radiation Measurement Program. J. Geophys. Res., 109 , D04105. doi:10.1029/2003JD003828.

    • Search Google Scholar
    • Export Citation
  • Steigenberger, P., M. Rothacher, R. Dietrich, M. Fritsche, A. Rülke, and S. Vey, 2006: Reprocessing of a global GPS network. J. Geophys. Res., 111 , B05402. doi:10.1029/2005JB003747.

    • Search Google Scholar
    • Export Citation
  • Steigenberger, P., V. Tesmer, M. Krügel, D. Thaller, R. Schmid, S. Vey, and M. Rothacher, 2007: Comparisons of homogeneously reprocessed GPS and VLBI long time-series of troposphere zenith delays and gradients. J. Geod., 81 , 503514. doi:10.1007/s00190-006-0124-y.

    • Search Google Scholar
    • Export Citation
  • Stier, W., 2001: Methoden der Zeitreihenanalyse. Springer-Verlag, 400 pp.

  • Stull, R. B., 1995: Meteorology for Scientists and Engineers—A Technical Companion Book. West Publishing, 528 pp.

  • Sun, J., 1993: Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error. J. Geophys. Res., 98 , (C4). 70697079.

    • Search Google Scholar
    • Export Citation
  • Tesmer, V., J. Boehm, R. Heinkelmann, and H. Schuh, 2006: Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLB. J. Geod., 81 , 409421. doi:10.1007/s00190-006-0126-9.

    • Search Google Scholar
    • Export Citation
  • Tregoning, P., R. Boers, D. O’Brien, and M. Hendy, 1998: Accuracy of absolute precipitable water vapor estimates from GPS observations. J. Geophys. Res., 103 , (D22). 2870128710.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1998: Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Climate Dyn., 14 , 213231.

    • Search Google Scholar
    • Export Citation
  • Vedel, H., K. S. Mogensen, and X-Y. Huang, 2001: Calculation of zenith delays from meteorological data comparison of NWP model, radiosonde and GPS delays. Phys. Chem. Earth, 26 , 497502.

    • Search Google Scholar
    • Export Citation
  • Vey, S., and R. Dietrich, 2008: Validation of the atmospheric water vapour content from NCEP using GPS observations over Antarctica. Geodetic and Geophysical Observations in Antarctica: An Overview in the IPY Perspective, A. Capra and R. Dietrich, Eds., Springer, 125–135.

    • Search Google Scholar
    • Export Citation
  • Vey, S., R. Dietrich, K. P. Johnsen, J. Miao, and G. Heygster, 2004: Comparison of tropospheric water vapour over Antarctica derived from AMSU-B data, ground-based GPS data and the NCEP/NCAR reanalysis. J. Meteor. Soc. Japan, 82 , 259267.

    • Search Google Scholar
    • Export Citation
  • Vey, S., R. Dietrich, M. Fritsche, A. Rülke, M. Rothacher, and P. Steigenberger, 2006: Influence of mapping function parameters on global GPS network analyses: Comparisons between NMF and IMF. Geophys. Res. Lett., 33 , L01814. doi:10.1029/2005GL024361.

    • Search Google Scholar
    • Export Citation
  • Vey, S., R. Dietrich, M. Fritsche, A. Rülke, P. Steigenberger, and M. Rothacher, 2009: On the homogeneity and interpretation of precipitable water time series derived from global GPS observations. J. Geophys. Res., 114 , D10101. doi:10.1029/2008JD010415.

    • Search Google Scholar
    • Export Citation
  • Wang, J., L. Zhang, and A. Dai, 2005: Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. J. Geophys. Res., 110 , D21101. doi:10.1029/2005JD006215.

    • Search Google Scholar
    • Export Citation
  • Wang, J., L. Zhang, A. Dai, T. Van Hove, and J. Van Baelen, 2007: A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. J. Geophys. Res., 112 , D11107. doi:10.1029/2006JD007529.

    • Search Google Scholar
    • Export Citation
  • Wang, J. R., and W. Manning, 2003: Retrievals of low integrated water vapor using MIR and SSM/T-2 measurements. IEEE Trans. Geosci. Remote Sens., 41 , 630639.

    • Search Google Scholar
    • Export Citation
  • Wickert, J., G. Beyerle, G. A. Hajj, V. Schwieger, and C. Reigber, 2002: GPS radio occultation with CHAMP: Atmospheric profiling utilizing the space-based single difference technique. Geophys. Res. Lett., 29 , 1187. doi:10.1029/2001GL013982.

    • Search Google Scholar
    • Export Citation
  • Yuan, L. L., R. A. Anthes, R. H. Ware, C. Rocken, W. D. Bonner, M. G. Bevis, and S. Businger, 1993: Sensing climate change using the Global Positioning System. J. Geophys. Res., 98 , 1492514937.

    • Search Google Scholar
    • Export Citation
  • Yunck, T. P., C. H. Liu, and R. Ware, 2000: A history of GPS sounding. Terr. Atmos. Ocean. Sci., 11 , 120.

  • Zhu, S. Y., F-H. Massmann, Y. Yu, and C. Reigber, 2003: Satellite antenna phase center offsets and scale errors in GPS solutions. J. Geod., 76 , 668672. doi:10.1007/s00190-002-0294-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 21
PDF Downloads 5 5 5

Validation of Precipitable Water Vapor within the NCEP/DOE Reanalysis Using Global GPS Observations from One Decade

View More View Less
  • 1 Institut für Planetare Geodäsie, Technische Universität Dresden, Dresden, Germany
  • | 2 Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum, Potsdam, Germany
Restricted access

Abstract

In contrast to previous studies validating numerical weather prediction (NWP) models using observations from the global positioning system (GPS), this paper focuses on the validation of seasonal and interannual variations in the water vapor. The main advantage of the performed validation is the independence of the GPS water vapor estimates compared to studies using water vapor datasets from radiosondes or satellite microwave radiometers that are already assimilated into the NWP models. Tropospheric parameters from a GPS reanalysis carried out in a common project of the Technical Universities in Munich and Dresden were converted into precipitable water (PW) using surface pressure observations from the WMO and mean atmospheric temperature data from ECMWF. PW time series were generated for 141 globally distributed GPS sites covering the time period from the beginning of 1994 to the end of 2004. The GPS-derived PW time series were carefully examined for their homogeneity. The validation of the NWP model from NCEP shows that the differences between the modeled and observed PW values are time dependent. In addition to establishing a long-term mean, this study also validates the seasonal cycle and interannual variations in the PW. Over Europe and large parts of North America the seasonal cycle and the interannual variations in the PW from GPS and NCEP agree very well. The results reveal a submillimeter accuracy of the GPS-derived PW anomalies. In the regions mentioned above, NCEP provides a highly accurate database for studies of long-term changes in the atmospheric water vapor. However, in the Southern Hemisphere large differences in the seasonal signals and in the PW anomalies were found between GPS and NCEP. The seasonal signal of the PW is underestimated by NCEP in the tropics and in Antarctica by up to 40% and 25%, respectively. Climate change studies based on water vapor data from NCEP should consider the large uncertainties in the analysis when interpreting these data, especially in the tropics.

* Current affiliation: Institut für Erdmessung, Leibniz Universität, Hannover, Germany

+ Current affiliation: Institut für Astronomische und Physikalische Geodäsie, Technische Universität München, Munich, Germany

# Current affiliation: Institut für Geodäsie und Photogrammetrie, Eidgenössische Technische Hochschule, Zurich, Switzerland

Corresponding author address: Sibylle Vey, Institut für Erdmessung, Leibniz Universität Hannover, 30167 Hannover, Germany. Email: vey@ife.uni-hannover.de

Abstract

In contrast to previous studies validating numerical weather prediction (NWP) models using observations from the global positioning system (GPS), this paper focuses on the validation of seasonal and interannual variations in the water vapor. The main advantage of the performed validation is the independence of the GPS water vapor estimates compared to studies using water vapor datasets from radiosondes or satellite microwave radiometers that are already assimilated into the NWP models. Tropospheric parameters from a GPS reanalysis carried out in a common project of the Technical Universities in Munich and Dresden were converted into precipitable water (PW) using surface pressure observations from the WMO and mean atmospheric temperature data from ECMWF. PW time series were generated for 141 globally distributed GPS sites covering the time period from the beginning of 1994 to the end of 2004. The GPS-derived PW time series were carefully examined for their homogeneity. The validation of the NWP model from NCEP shows that the differences between the modeled and observed PW values are time dependent. In addition to establishing a long-term mean, this study also validates the seasonal cycle and interannual variations in the PW. Over Europe and large parts of North America the seasonal cycle and the interannual variations in the PW from GPS and NCEP agree very well. The results reveal a submillimeter accuracy of the GPS-derived PW anomalies. In the regions mentioned above, NCEP provides a highly accurate database for studies of long-term changes in the atmospheric water vapor. However, in the Southern Hemisphere large differences in the seasonal signals and in the PW anomalies were found between GPS and NCEP. The seasonal signal of the PW is underestimated by NCEP in the tropics and in Antarctica by up to 40% and 25%, respectively. Climate change studies based on water vapor data from NCEP should consider the large uncertainties in the analysis when interpreting these data, especially in the tropics.

* Current affiliation: Institut für Erdmessung, Leibniz Universität, Hannover, Germany

+ Current affiliation: Institut für Astronomische und Physikalische Geodäsie, Technische Universität München, Munich, Germany

# Current affiliation: Institut für Geodäsie und Photogrammetrie, Eidgenössische Technische Hochschule, Zurich, Switzerland

Corresponding author address: Sibylle Vey, Institut für Erdmessung, Leibniz Universität Hannover, 30167 Hannover, Germany. Email: vey@ife.uni-hannover.de

Save