• Abramopoulos, F., C. Rosenzweig, and B. Choudhury, 1988: Improved ground hydrology calculations for global climate models (GCMs): Soil water movement and evapotranspiration. J. Climate, 1 , 921941.

    • Search Google Scholar
    • Export Citation
  • Abramowitz, M., and I. A. Stegun, 1965: Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Dover Publications, 1046 pp.

    • Search Google Scholar
    • Export Citation
  • Ahmad, M. I., C. D. Sinclair, and A. Werritty, 1988: Log-logistic flood frequency analysis. J. Hydrol., 98 , 205224.

  • Akinremi, O. O., S. M. McGinn, and A. G. Barr, 1996: Evaluation of the Palmer drought index on the Canadian prairies. J. Climate, 9 , 897905.

    • Search Google Scholar
    • Export Citation
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp.

    • Search Google Scholar
    • Export Citation
  • Alley, W. M., 1984: The Palmer drought severity index: Limitations and applications. J. Appl. Meteor., 23 , 11001109.

  • Beniston, M., and Coauthors, 2007: Future extreme events in European climate: An exploration of regional climate model projections. Climatic Change, 81 , (Suppl. 1). 7195.

    • Search Google Scholar
    • Export Citation
  • Burton, I., R. W. Kates, and G. F. White, 1978: The Environment as Hazard. Oxford University Press, 240 pp.

  • Chang, T. J., and X. A. Cleopa, 1991: A proposed method for drought monitoring. Water Resour. Bull., 27 , 275281.

  • Changnon, S. A., and W. E. Easterling, 1989: Measuring drought impacts: The Illinois case. Water Resour. Bull., 25 , 2742.

  • Droogers, P., and R. G. Allen, 2002: Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst., 16 , 3345.

    • Search Google Scholar
    • Export Citation
  • Dubrovsky, M., M. D. Svoboda, M. Trnka, M. J. Hayes, D. A. Wilhite, Z. Zalud, and P. Hlavinka, 2008: Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theor. Appl. Climatol., 96 , 155171.

    • Search Google Scholar
    • Export Citation
  • Du Pisani, C. G., H. J. Fouché, and J. C. Venter, 1998: Assessing rangeland drought in South Africa. Agric. Syst., 57 , 367380.

  • Elfatih, A., B. Eltahir, and P. J. F. Yeh, 1999: On the asymmetric response of aquifer water level to floods and droughts in Illinois. Water Resour. Res., 35 , 11991217.

    • Search Google Scholar
    • Export Citation
  • González, J., and J. B. Valdés, 2006: New drought frequency index: Definition and comparative performance analysis. Water Resour. Res., 42 , W11421. doi:10.1029/2005WR004308.

    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1998: Comparing the Palmer Drought Index and the Standardized Precipitation Index. J. Amer. Water Resour. Assoc., 34 , 113121.

    • Search Google Scholar
    • Export Citation
  • Hayes, M., D. A. Wilhite, M. Svoboda, and O. Vanyarkho, 1999: Monitoring the 1996 drought using the standardized precipitation index. Bull. Amer. Meteor. Soc., 80 , 429438.

    • Search Google Scholar
    • Export Citation
  • Heim, R. R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83 , 11491165.

  • Hosking, J. R. M., 1990: L-Moments: Analysis and estimation of distributions using linear combinations of order statistics. J. Roy. Stat. Soc., 52B , 105124.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and G. D. Willson, 2000: Effect of temperature anomalies on the Palmer drought severity index in the central United States. Int. J. Climatol., 20 , 18991911.

    • Search Google Scholar
    • Export Citation
  • Ji, L., and A. J. Peters, 2003: Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ., 87 , 8598.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and A. Moberg, 2003: Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J. Climate, 16 , 206223.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., 1983: Some spatial characteristics of drought duration in the United States. J. Climate Appl. Meteor., 22 , 13561366.

  • Karl, T. R., 1986: The sensitivity of the Palmer drought severity index and Palmer’s Z-index to their calibration coefficients including potential evapotranspiration. J. Climate Appl. Meteor., 25 , 7786.

    • Search Google Scholar
    • Export Citation
  • Kempes, C. P., O. B. Myers, D. D. Breshears, and J. J. Ebersole, 2008: Comparing response of Pinus edulis tree-ring growth to five alternate moisture indices using historic meteorological data. J. Arid Environ., 72 , 350357.

    • Search Google Scholar
    • Export Citation
  • Keyantash, J. A., and J. A. Dracup, 2002: The quantification of drought: An evaluation of drought indices. Bull. Amer. Meteor. Soc., 83 , 11671180.

    • Search Google Scholar
    • Export Citation
  • Keyantash, J. A., and J. A. Dracup, 2004: An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resour. Res., 40 , W09304. doi:10.1029/2003WR002610.

    • Search Google Scholar
    • Export Citation
  • Khan, S., H. F. Gabriel, and T. Rana, 2008: Standard precipitation index to track drought and assess impact of rainfall on watertables in irrigation areas. Irrig. Drain. Syst., 22 , 159177.

    • Search Google Scholar
    • Export Citation
  • Lloyd-Hughes, B., and M. A. Saunders, 2002: A drought climatology for Europe. Int. J. Climatol., 22 , 15711592.

  • Mavromatis, T., 2007: Drought index evaluation for assessing future wheat production in Greece. Int. J. Climatol., 27 , 911924.

  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology. Anaheim, CA, Amer. Meteor. Soc., 179–184.

    • Search Google Scholar
    • Export Citation
  • Narasimhan, B., and R. Srinivasan, 2005: Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric. For. Meteor., 133 , 6988.

    • Search Google Scholar
    • Export Citation
  • Nkemdirim, L., and L. Weber, 1999: Comparison between the droughts of the 1930s and the 1980s in the southern prairies of Canada. J. Climate, 12 , 24342450.

    • Search Google Scholar
    • Export Citation
  • Oladipo, E. O., 1985: A comparative performance analysis of three meteorological drought indices. J. Climatol., 5 , 655664.

  • Palmer, W. C., 1965: Meteorological droughts. U.S. Department of Commerce, Weather Bureau Research Paper 45, 58 pp.

  • Pandey, R. P., and K. S. Ramasastri, 2001: Relationship between the common climatic parameters and average drought frequency. Hydrol. Processes, 15 , 10191032.

    • Search Google Scholar
    • Export Citation
  • Patel, N. R., P. Chopra, and V. K. Dadhwal, 2007: Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteor. Appl., 14 , 329336.

    • Search Google Scholar
    • Export Citation
  • Rebetez, M., H. Mayer, O. Dupont, D. Schindler, K. Gartner, J. P. Kropp, and A. Menzel, 2006: Heat and drought 2003 in Europe: A climate synthesis. Ann. For. Sci., 63 , 569577.

    • Search Google Scholar
    • Export Citation
  • Redmond, K. T., 2002: The depiction of drought. Bull. Amer. Meteor. Soc., 83 , 11431147.

  • Sheffield, J., and E. F. Wood, 2008: Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dyn., 31 , 79105.

    • Search Google Scholar
    • Export Citation
  • Sims, A. P., D. dutta, S. Nigoyi, and S. Raman, 2002: Adopting drought indices for estimating soil moisture: A North Carolina case study. Geophys. Res. Lett., 29 , 1183. doi:10.1029/2001GL013343.

    • Search Google Scholar
    • Export Citation
  • Singh, V. P., H. Guo, and F. X. Yu, 1993: Parameter estimation for 3-parameter log-logistic distribution (LLD3) by Pome. Stochastic Hydrol. Hydraul., 7 , 163177.

    • Search Google Scholar
    • Export Citation
  • Skøien, J. O., G. Blöschl, and A. W. Western, 2003: Characteristic space scales and timescales in hydrology. Water Resour. Res., 39 , 1304. doi:10.1029/2002WR001736.

    • Search Google Scholar
    • Export Citation
  • Snoussi, M., S. Haïda, and S. Imassi, 2002: Effects of the construction of dams on the water and sediment fluxes of the Moulouya and the Sebou Rivers, Morocco. Reg. Environ. Change, 3 , 512.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Soulé, P. T., 1992: Spatial patterns of drought frequency and duration in the contiguous USA based on multiple drought event definitions. Int. J. Climatol., 12 , 1124.

    • Search Google Scholar
    • Export Citation
  • Syed, T. H., J. S. Famiglietti, M. Rodell, J. Chen, and C. R. Wilson, 2008: Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res., 44 , W02433. doi:10.1029/2006WR005779.

    • Search Google Scholar
    • Export Citation
  • Szalai, S., Cs Szinell, and J. Zoboki, 2000: Drought monitoring in Hungary. Early Warning Systems for Drought Preparedness and Drought Management, World Meteorological Organization Rep. WMO/TD 1037, 182–199.

    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38 , 5594.

  • Tsakiris, G., D. Pangalou, and H. Vangelis, 2007: Regional drought assessment based on the Reconnaissance Drought Index (RDI). Water Resour. Manage., 21 , 821833.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., 2006: Differences in spatial patterns of drought on different time scales: An analysis of the Iberian Peninsula. Water Resour. Manage., 20 , 3760.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., 2007: Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi-arid Region. Nat. Hazards, 40 , 173208.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., and J. I. López-Moreno, 2005: Hydrological response to different time scales of climatological drought: An evaluation of the standardized precipitation index in a mountainous Mediterranean basin. Hydrol. Earth Syst. Sci., 9 , 523533.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., J. M. Cuadrat-Prats, and A. Romo, 2006: Early prediction of crop productions using drought indices at different time-scales and remote sensing data: Application in the Ebro Valley (north-east Spain). Int. J. Remote Sens., 27 , 511518.

    • Search Google Scholar
    • Export Citation
  • Wafa, T. A., and A. H. Labib, 1973: Seepage losses from Lake Nasser. Man-Made Lakes: Their Problems and Environmental Effects, Geophys. Monogr., Vol. 17, Amer. Geophys. Union, 287–291.

    • Search Google Scholar
    • Export Citation
  • Webb, R. S., C. E. Rosenzweig, and E. R. Levine, 1993: Specifying land surface characteristics in general circulation models: Soil profile data set and derived water-holding capacities. Global Biogeochem. Cycles, 7 , 97108.

    • Search Google Scholar
    • Export Citation
  • Weber, L., and L. C. Nkemdirim, 1998: The Palmer drought severity index revisited. Geogr. Ann., 80A , 153172.

  • Wells, N., 2003: PDSI Users Manual Version 2.0. National Agricultural Decision Support System, University of Nebraska–Lincoln, 17 pp. [Available online at http://greenleaf.unl.edu/downloads/PDSI_Manual.pdf].

    • Search Google Scholar
    • Export Citation
  • Wells, N., S. Goddard, and M. J. Hayes, 2004: A self-calibrating Palmer drought severity index. J. Climate, 17 , 23352351.

  • Wilhite, D. A., 1993: Drought Assessment, Management, and Planning: Theory and Case Studies. Natural Resource Management and Policy Series, Vol. 2, Kluwer, 293 pp.

    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., and M. H. Glantz, 1985: Understanding the drought phenomenon: The role of definitions. Water Int., 10 , 111120.

  • Wu, H., M. D. Svoboda, M. J. Hayes, D. A. Wilhite, and F. Wen, 2007: Appropriate application of the Standardized Precipitation Index in arid locations and dry seasons. Int. J. Climatol., 27 , 6579.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 820 820 820
PDF Downloads 665 665 665

A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index

View More View Less
  • 1 Instituto Pirenaico de Ecología, Zaragoza, Spain
  • | 2 Estación Experimental de Aula Dei, Zaragoza, Spain
  • | 3 Instituto Pirenaico de Ecología, Zaragoza, Spain
Restricted access

Abstract

The authors propose a new climatic drought index: the standardized precipitation evapotranspiration index (SPEI). The SPEI is based on precipitation and temperature data, and it has the advantage of combining multiscalar character with the capacity to include the effects of temperature variability on drought assessment. The procedure to calculate the index is detailed and involves a climatic water balance, the accumulation of deficit/surplus at different time scales, and adjustment to a log-logistic probability distribution. Mathematically, the SPEI is similar to the standardized precipitation index (SPI), but it includes the role of temperature. Because the SPEI is based on a water balance, it can be compared to the self-calibrated Palmer drought severity index (sc-PDSI). Time series of the three indices were compared for a set of observatories with different climate characteristics, located in different parts of the world. Under global warming conditions, only the sc-PDSI and SPEI identified an increase in drought severity associated with higher water demand as a result of evapotranspiration. Relative to the sc-PDSI, the SPEI has the advantage of being multiscalar, which is crucial for drought analysis and monitoring.

Corresponding author address: Sergio M. Vicente-Serrano, Avda. Montañana 1004, P.O. Box 13034, Zaragoza 50080, Spain. Email: svicen@ipe.csic.es

Abstract

The authors propose a new climatic drought index: the standardized precipitation evapotranspiration index (SPEI). The SPEI is based on precipitation and temperature data, and it has the advantage of combining multiscalar character with the capacity to include the effects of temperature variability on drought assessment. The procedure to calculate the index is detailed and involves a climatic water balance, the accumulation of deficit/surplus at different time scales, and adjustment to a log-logistic probability distribution. Mathematically, the SPEI is similar to the standardized precipitation index (SPI), but it includes the role of temperature. Because the SPEI is based on a water balance, it can be compared to the self-calibrated Palmer drought severity index (sc-PDSI). Time series of the three indices were compared for a set of observatories with different climate characteristics, located in different parts of the world. Under global warming conditions, only the sc-PDSI and SPEI identified an increase in drought severity associated with higher water demand as a result of evapotranspiration. Relative to the sc-PDSI, the SPEI has the advantage of being multiscalar, which is crucial for drought analysis and monitoring.

Corresponding author address: Sergio M. Vicente-Serrano, Avda. Montañana 1004, P.O. Box 13034, Zaragoza 50080, Spain. Email: svicen@ipe.csic.es

Save