• Achberger, C., M. Linderson, and D. Chen, 2003: Performance of the Rossby Centre regional atmospheric model in southern Sweden: Comparison of simulated and observed precipitation. Theor. Appl. Climatol., 76 , 219234.

    • Search Google Scholar
    • Export Citation
  • Beck, C., J. Grieser, and B. Rudolf, 2004: A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. German Weather Service Climate Status Rep., 181–190.

    • Search Google Scholar
    • Export Citation
  • Beniston, M., and Coauthors, 2006: Future extreme events in European climate: An exploration of regional climate model projections. Climatic Change, 81 , 7195.

    • Search Google Scholar
    • Export Citation
  • Briggs, P., and J. Cogley, 1996: Topographic bias in mesoscale precipitation networks. J. Climate, 9 , 205218.

  • Buonomo, E., R. Jones, C. Huntingford, and J. Hannaford, 2007: On the robustness of changes in extreme precipitation over Europe from two high resolution climate change simulations. Quart. J. Roy. Meteor. Soc., 133 , 6581.

    • Search Google Scholar
    • Export Citation
  • Castro, M., C. Fernandez, and M. A. Gaertner, 1993: Description of a mesoscale atmospheric numerical model. Mathematics, Climate and Environment, J. I. Díaz and J. L. Lions, Eds., Masson, 230–253.

    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3 , 249266.

    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., 2000: Seasonal and interannual variations of total evaporation and their relations with precipitation, net radiation, and net carbon accumulation for the Gediz basin area. J. Hydrol., 229 , 7786.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and O. B. Christensen, 2007: A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81 , 730.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., O. B. Christensen, P. Lopez, E. van Meijgaard, and M. Botzet, 1996: The HIRHAM4 regional atmospheric climate model. DMI Sci. Rep. 96-4, 51 pp.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., B. Machenhauer, R. G. Jones, C. Schär, P. M. Ruti, M. Castro, and G. Visconti, 1997: Validation of present-day regional climate simulations over Europe: LAM simulations with observed boundary conditions. Climate Dyn., 13 , 489506.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., T. Carter, and F. Giorgi, 2002: PRUDENCE employs new methods to assess European climate change. Eos, Trans. Amer. Geophys. Union, 83 , 147.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007a: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., T. R. Carter, M. Rummukainen, and G. Amanatidis, 2007b: Evaluating the performance and utility of regional climate models: The PRUDENCE project. Climatic Change, 81 .doi:10.1007/s10584-006-9211-6.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20 , 752759.

  • Coles, S., Ed. 2001: An Introduction to Statistical Modelling of Extreme Values. Springer, 208 pp.

  • Cressie, N., and S. N. Lahiri, 1993: The asymptotic-distribution of reml estimators. J. Multivariate Anal., 45 , 217233.

  • Deque, M., 2007: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Global Planet. Change, 57 , 1626.

    • Search Google Scholar
    • Export Citation
  • Deque, M., and Coauthors, 2005: Global high resolution versus limited area model climate change projections over Europe: Quantifying confidence level from PRUDENCE results. Climate Dyn., 25 , 653670.

    • Search Google Scholar
    • Export Citation
  • Deque, M., and Coauthors, 2006: An intercomparison of regional climate simulations for europe: assessing uncertainties in model projections. Climatic Change, 81 , 5370.

    • Search Google Scholar
    • Export Citation
  • Döscher, R., U. Willén, C. Jones, A. Rutgersson, H. E. Markus Meier, U. Hansson, and L. P. Graham, 2002: The development of the regional coupled ocean–atmosphere model RCAO. Boreal Environ. Res., 7 , 183192.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R., and Q. H. Li, 2002: Detailed analysis of the error associated with the rainfall retrieved by the NOAA/NESDIS Special Sensor Microwave/Imager algorithm 2. Rainfall over land. J. Geophys. Res., 107 , 4680. doi:10.1029/2001JD001172.

    • Search Google Scholar
    • Export Citation
  • Frei, A., J. A. Miller, and D. A. Robinson, 2003: Improved simulations of snow extent in the second phase of the Atmospheric Model Intercomparison Project (AMIP-2). J. Geophys. Res., 108 , 4369. doi:10.1029/2002JD003030.

    • Search Google Scholar
    • Export Citation
  • Frei, C., and C. Schar, 1998: A precipitation climatology of the Alps from high resolution rain-gauge observations. Int. J. Climatol., 18 , 873900.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., M. R. Marinucci, and G. Visconti, 1992: A 2 x CO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model 2. Climate change scenario. J. Geophys. Res., 97 , 1001110028.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., M. R. Marinucci, G. Bates, and G. De Canio, 1993: Development of a second generation regional climate model (Reg-CM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121 , 28142832.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Coauthors, 2001: Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings. Geophys. Res. Lett., 28 , 33173320.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., X. Bi, and J. Pal, 2004a: Mean, interannual variability and trends in a regional climate change experiment over Europe: I. Present-day climate (1961–1990). Climate Dyn., 22 , 733756.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., X. Bi, and J. Pal, 2004b: Mean, interannual variability and trends in a regional climate change experiment over Europe: II. Climate change scenario (2071–2100). Climate Dyn., 23 , 839858.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., and D. P. Lettenmaier, 2006: Flood prediction in the future: Recognizing hydrologic issues in anticipation of the Global Precipitation Measurement mission. Water Resour. Res., 42 , W11301. doi:10.1029/2006WR005202.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., and H. G. Li, 1995: Microphysical contrasts in Atlantic stratus. J. Atmos. Sci., 52 , 30313040.

  • Huffman, G. J., R. F. Adler, B. Rudolf, U. Schneider, and P. R. Keehn, 1995: Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. J. Climate, 8 , 12841295.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Search Google Scholar
    • Export Citation
  • Hulme, M., D. Conway, P. D. Jones, T. Jiang, E. M. Barrow, and C. Turney, 1995: Construction of a 1961–1990 European climatology for climate change modelling and impact applications. Int. J. Climatol., 15 , 13331363.

    • Search Google Scholar
    • Export Citation
  • Jacob, D., 2001: The role of water vapour in the atmosphere. A short overview from a climate modeller’s point of view. Phys. Chem. Earth, 26A , 523527.

    • Search Google Scholar
    • Export Citation
  • Jacob, D., and Coauthors, 2007: An intercomparison of regional climate models for Europe: Model performance in present-day climate. Climatic Change, 81 , 3152.

    • Search Google Scholar
    • Export Citation
  • Jeuken, A. B. M., P. C. Siegmund, L. C. Heijboer, J. Feichter, and L. Bengtsson, 1996: On the potential of assimilating meteorological analyses in a global climate model for the purpose of model validation. J. Geophys. Res., 101 , 1693916950.

    • Search Google Scholar
    • Export Citation
  • Jones, C., L. M. V. Carvalho, R. W. Higgins, D. E. Waliser, and J. K. E. Schemm, 2004: A statistical forecast model of tropical intraseasonal convective anomalies. J. Climate, 17 , 20782095.

    • Search Google Scholar
    • Export Citation
  • Jones, P., and A. Moberg, 2003: Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J. Climate, 16 , 206223.

    • Search Google Scholar
    • Export Citation
  • Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131 , 26392663.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., T. F. Stocker, F. Joos, and G. Plattner, 2002: Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature, 416 , 719723.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., B. van den Hurk, E. van Meijgaard, A. P. van Ulden, and J. H. Cuijpers, 2003: Simulation of present-day climate in RACMO2: first results and model developments. KNMI Tech. Rep. 252, 24 pp.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., A. van Ulden, B. van den Hurk, and E. van Meijgaard, 2007: Summertime inter-annual temperature variability in an ensemble of regional model simulations: Analysis of the surface energy budget. Climatic Change, 81 , 233247.

    • Search Google Scholar
    • Export Citation
  • Leslie, R. V., and D. H. Staelin, 2004: NPOESS aircraft sounder testbed-microwave: Observations of clouds and precipitation at 54, 118, 183, and 425 GHz. IEEE Trans. Geosci. Remote Sens., 42 , 22402247.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1978: Available energy and maintenance of a moist circulation. Tellus, 30 , 1531.

  • Machenhauer, B., M. Windelband, M. Botzet, J. H. Christensen, M. Déqué, R. G. Jones, P. M. Ruti, and G. Visconti, 1998: Validation and analysis of regional present-day climate and climate change simulations over Europe. Max-Planck Institut für Meteorologie Tech. Rep. 275.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2000: Surface heterogeneity and vertical structure of the boundary layer. Bound.-Layer Meteor., 96 , 3362.

  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25 , 693712.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and Coeditors, 2000: Emissions Scenarios. Cambridge University Press, 599 pp.

  • New, M., M. Hulme, and P. Jones, 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12 , 829856.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13 , 22172238.

    • Search Google Scholar
    • Export Citation
  • New, M., D. Lister, M. Hulme, and I. Makin, 2002: A high-resolution data set of surface climate over global land areas. Climate Res., 21 , 125.

    • Search Google Scholar
    • Export Citation
  • Onol, B., and F. M. Semazzi, 2009: Regionalization of climate change simulations over the eastern Mediterranean. J. Climate, 22 , 19441961.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and J. Räisänen, 2002: Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature, 415 , 512514.

    • Search Google Scholar
    • Export Citation
  • Pope, V., M. Gallani, P. Rowntree, and R. Statton, 2000: The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Climate Dyn., 16 , 123146.

    • Search Google Scholar
    • Export Citation
  • Räisänen, J., 2002: CO2-induced changes in interannual temperature and precipitation variability in 19 CMIP2 experiments. J. Climate, 15 , 23952411.

    • Search Google Scholar
    • Export Citation
  • Räisänen, J., and Coauthors, 2004: European climate in the late twenty-first century: Regional simulations with two driving global models and two forcing scenarios. Climate Dyn., 22 , 1331.

    • Search Google Scholar
    • Export Citation
  • Ranzi, R., M. Zappa, and B. Bacchi, 2007: Hydrological aspects of the Mesoscale Alpine Programme: Findings from field experiments and simulations. Quart. J. Roy. Meteor. Soc., 133 , 867880.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., 1988: A real-time global sea surface temperature analysis. J. Climate, 1 , 7587.

  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33 , 645671.

  • Rowell, D. P., 2005: A scenario of European climate change for the late twenty-first century: Seasonal means and interannual variability. Climate Dyn., 25 , 837849.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., and U. Schneider, 2004: Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations. Proc. Second Workshop of the Int. Precipitation Working Group, Monterey, CA, EUMETSAT, 231–247.

    • Search Google Scholar
    • Export Citation
  • Rummukainen, M., J. Räisänen, B. Bringfelt, A. Ullerstig, A. Omstedt, U. Willen, U. Hansson, and C. Jones, 2001: A regional climate model for northern Europe: Model description and results from the downscaling of two GCM control simulations. Climate Dyn., 17 , 339359.

    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1982: Methods of correction for systematic error in point precipitation measurement for operational use. WMO Rep. 589/Operational Hydrology Rep. 21, 91 pp.

    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1989: Reliability of precipitation gradient estimates. Proc. XIV Int. Conf. on Carpathian Meteorology, Sofia, Bulgaria, 402–408.

    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1996: Adjustment of tipping-bucket precipitation gauge measurements. Atmos. Res., 42 , 237246.

  • Sheffield, J., and E. Wood, 2008: Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Climate, 21 , 432458.

    • Search Google Scholar
    • Export Citation
  • Smith, L. A., 2002: What might we learn from climate forecasts? Proc. Natl. Acad. Sci. USA, 99 , 24782492.

  • Smith, T. M., X. Yin, and A. Gruber, 2006: Variations in annual global precipitation (1979–2004), based on the Global Precipitation Climatology Project 2.5° analysis. Geophys. Res. Lett., 33 , L06705. doi:10.1029/2005GL025393.

    • Search Google Scholar
    • Export Citation
  • Staelin, D. H., and F. W. Chen, 2000: Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite. IEEE Trans. Geosci. Remote Sens., 38 , 23222332.

    • Search Google Scholar
    • Export Citation
  • Steppeler, J., G. Doms, U. Schattler, H. W. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82 , 7596.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and E. Sanchez, 2008: Changes in the European precipitation climatologies as derived by an ensemble of regional models. J. Climate, 21 , 25402557.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., C. Kidd, V. Levizzani, and F. S. Marzano, 2004: A maximum entropy approach to satellite quantitative precipitation estimation (QPE). Int. J. Remote Sens., 25 , 46294639.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., E. Sanchez, and M. A. Gaertner, 2007: Regional changes in precipitation in Europe under an increased greenhouse emissions scenario. Geophys. Res. Lett., 34 , L06701. doi:10.1029/2006GL029035.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., E. Sanchez, and R. Romera, 2008: Exploiting an ensemble of regional climate models to provide robust estimates of projected changes in monthly temperature and precipitation probability distribution functions. Tellus, 61A , 5771. doi:10.1111/j.1600-0870.2008.00374.x.

    • Search Google Scholar
    • Export Citation
  • Testud, J., 2002: The space mission TRMM and the Global Precipitation Mission. Houille Blanche, 1 , 6869.

  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125 , 32973319.

  • Turk, J., F. Marzano, and A. Mugnai, 1998: Effects of degraded sensor resolution upon passive microwave precipitation retrievals of tropical rainfall. J. Atmos. Sci., 55 , 16891705.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Vidale, P., D. Luthi, C. Frei, S. Seneviratne, and C. Schar, 2003: Predictability and uncertainty in a regional climate model. J. Geophys. Res., 108 , 4586. doi:10.1029/2002JD002810.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 3 3 3

A Joint Estimate of the Precipitation Climate Signal in Europe Using Eight Regional Models and Five Observational Datasets

View More View Less
  • 1 Department of Environmental Sciences, University of Castilla-La Mancha, Toledo, Spain
Restricted access

Abstract

This paper presents an analysis of the precipitation climate signal in Europe emerging from a simulation of heterogeneous regional climate models (RCMs) using five observational datasets as the reference for present day climate conditions. Current climate simulations, as well as those from the A2 family of scenarios from the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES-A2), from eight RCMs involved in the Prediction of Regional Scenarios and Uncertainties for Defining European Climate Change Risks and Effects (PRUDENCE) project have been cross-compared with data from the Climate Research Unit (CRU), the Global Precipitation Climatology Project (GPCP), the Global Precipitation Climatology Centre (GPCC), the Climate Prediction Center (CPC), and the CPC Merged Analysis of Precipitation (CMAP) databases for Europe. The RCMs used are HIRHAM, the Climate High Resolution Model (CHRM), the Rossby Centre Atmosphere–Ocean (RCAO) model, the GKSS Climate Version of the Local Model (CLM), the Hadley Center RCM (HadRM3H), the Atmospheric Hydrostatic Regional Model (REMO), the Prognostic Model at the Mesoscale (PROMES), and the regional coupled ocean–atmosphere–ice model (RACMO). The comparison shows that the climate signal has to be interpreted depending on the reference data used. Although each validation dataset has its own relative merits and shortcomings, it is known that all of the datasets present variable uncertainties and error sources, which impedes consideration of a single dataset as the only valid representation of actual precipitation. Hence, it is suggested that a robust joint estimate of changes in future precipitation might include the uncertainties of both the RCMs and those of the observational datasets. After accounting for the difference between observed and simulated precipitation in the present climate, the analysis of such joint estimates reveals significant agreement in the climate signal for most of Europe. This lends confidence to the idea that the RCMs are able to correctly simulate future changes in precipitation.

Corresponding author address: Francisco J. Tapiador, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain. Email: francisco.tapiador@uclm.es

Abstract

This paper presents an analysis of the precipitation climate signal in Europe emerging from a simulation of heterogeneous regional climate models (RCMs) using five observational datasets as the reference for present day climate conditions. Current climate simulations, as well as those from the A2 family of scenarios from the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES-A2), from eight RCMs involved in the Prediction of Regional Scenarios and Uncertainties for Defining European Climate Change Risks and Effects (PRUDENCE) project have been cross-compared with data from the Climate Research Unit (CRU), the Global Precipitation Climatology Project (GPCP), the Global Precipitation Climatology Centre (GPCC), the Climate Prediction Center (CPC), and the CPC Merged Analysis of Precipitation (CMAP) databases for Europe. The RCMs used are HIRHAM, the Climate High Resolution Model (CHRM), the Rossby Centre Atmosphere–Ocean (RCAO) model, the GKSS Climate Version of the Local Model (CLM), the Hadley Center RCM (HadRM3H), the Atmospheric Hydrostatic Regional Model (REMO), the Prognostic Model at the Mesoscale (PROMES), and the regional coupled ocean–atmosphere–ice model (RACMO). The comparison shows that the climate signal has to be interpreted depending on the reference data used. Although each validation dataset has its own relative merits and shortcomings, it is known that all of the datasets present variable uncertainties and error sources, which impedes consideration of a single dataset as the only valid representation of actual precipitation. Hence, it is suggested that a robust joint estimate of changes in future precipitation might include the uncertainties of both the RCMs and those of the observational datasets. After accounting for the difference between observed and simulated precipitation in the present climate, the analysis of such joint estimates reveals significant agreement in the climate signal for most of Europe. This lends confidence to the idea that the RCMs are able to correctly simulate future changes in precipitation.

Corresponding author address: Francisco J. Tapiador, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain. Email: francisco.tapiador@uclm.es

Save