• Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM. J. Atmos. Sci., 63 , 33833403.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J., S. I. Shin, and P. D. Sardeshmukh, 2005: Tropical climate regimes and global climate sensitivity in a simple setting. J. Atmos. Sci., 62 , 12261240.

    • Search Google Scholar
    • Export Citation
  • Bellon, G., and A. H. Sobel, 2008a: Instability of the axisymmetric monsoon flow and intraseasonal oscillation. J. Geophys. Res., 113 , D07108. doi:10.1029/2007JD009291.

    • Search Google Scholar
    • Export Citation
  • Bellon, G., and A. H. Sobel, 2008b: Poleward-propagating intraseasonal monsoon disturbances in an intermediate-complexity axisymmetric model. J. Atmos. Sci., 65 , 470489.

    • Search Google Scholar
    • Export Citation
  • Bellon, G., A. H. Sobel, and J. Vialard, 2008: Ocean–atmosphere coupling in the monsoon intraseasonal oscillation: A simple model study. J. Climate, 21 , 52545270.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112 , 677691.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., A. H. Sobel, and Y. Kushnir, 2006: GCM precipitation biases in the tropical Atlantic. J. Climate, 19 , 935958.

  • Bretherton, C. S., 2007: Challenges in numerical modeling of tropical circulations. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 302–330.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., and B. Chen, 2004: Single and double ITCZ in an aqua-planet model with constant sea surface temperature and solar angle. Climate Dyn., 22 , 447459.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Tropical cyclogenesis and the formation of the ITCZ. Mathematical Problems of Geophysical Fluid Dynamics, W. H. Reid, Ed., American Mathematical Society, 355–368.

    • Search Google Scholar
    • Export Citation
  • Dai, A. G., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19 , 46054630.

  • Dai, F. S., R. C. Yu, X. H. Zhang, Y. Q. Yu, and J. G. Li, 2003: The impact of low-level cloud over the eastern subtropical Pacific on the “double ITCZ” in LASG FGCM-0. Adv. Atmos. Sci., 20 , 461474.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J-Y. Grandpeix, J-M. Piriou, J-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130 , 30553079.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44 , 23242340.

  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48 , 23132329.

  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120 , 11111143.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64 , 19591976.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., J. Shukla, E. K. Schneider, and Y. Sud, 1984: Study of the dynamic of the intertropical convergence zone with a symmetric version of the GLAS climatic model. J. Atmos. Sci., 41 , 519.

    • Search Google Scholar
    • Export Citation
  • Gu, G., R. F. Adler, and A. H. Sobel, 2005: The eastern Pacific ITCZ during the boreal spring. J. Atmos. Sci., 62 , 11571174.

  • Hayashi, Y-Y., and A. Sumi, 1986: The 30–40 day oscillations simulated in an “aqua planet” model. J. Meteor. Soc. Japan, 64 , 451467.

    • Search Google Scholar
    • Export Citation
  • Hess, P. G., D. S. Battisti, and P. J. Rasch, 1993: Maintenance of the intertropical convergence zones and the tropical circulation on a water-covered earth. J. Atmos. Sci., 50 , 691713.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. R., and J. D. Neelin, 2007: The convective cold top and quasi equilibrium. J. Atmos. Sci., 64 , 14671487.

  • Holton, J. R., J. M. Wallace, and J. A. Young, 1971: On boundary layer dynamics and the ITCZ. J. Atmos. Sci., 28 , 275280.

  • Kirtman, B. P., and E. K. Schneider, 2000: A spontaneously generated tropical atmospheric general circulation. J. Atmos. Sci., 57 , 20802093.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2006: A mass flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63 , 18951909.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1974: Further studies of parameterization of influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31 , 12321240.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., I. M. Held, and J. D. Neelin, 1988: The Madden–Julian oscillation in an idealized general circulation model. J. Atmos. Sci., 45 , 38103832.

    • Search Google Scholar
    • Export Citation
  • Li, L. J., B. Wang, Y-Q. Wang, and H. Wan, 2007: Improvements in climate simulation with modifications to the Tiedtke convective parameterization in the grid-point atmospheric model of IAP LASG (GAMIL). Adv. Atmos. Sci., 24 , 323335.

    • Search Google Scholar
    • Export Citation
  • Lietzke, C. E., C. Deser, and T. H. Vonder Haar, 2001: Evolutionary structure of the eastern Pacific double ITCZ based on satellite moisture profile retrievals. J. Climate, 14 , 743751.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 18 , 44974525.

  • Lindzen, R. S., 1974: Wave-CISK in the tropics. J. Atmos. Sci., 31 , 156179.

  • Lindzen, R. S., and S. Nigam, 1987: On the role of the sea surface temperature gradients in forcing the low-level winds and convergence in the tropics. J. Atmos. Sci., 44 , 24182436.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrological cycle. Mon. Wea. Rev., 93 , 769798.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123 , 28252838.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and B. J. Hoskins, 2000: A standard test for AGCMs including their physical parameterizations: I: The proposal. Atmos. Sci. Lett., 1 , 101107.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—Formulation. J. Atmos. Sci., 57 , 17411766.

  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44 , 23412348.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1993: Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones: Significance of the distribution of evaporation. J. Atmos. Sci., 50 , 18741887.

    • Search Google Scholar
    • Export Citation
  • Peters, M. E., Z. Kuang, and C. Walker, 2008: Analysis of atmospheric energy transport in ERA-40 and implications for simple models of the mean tropical circulation. J. Climate, 21 , 52295241.

    • Search Google Scholar
    • Export Citation
  • Pike, A. C., 1971: Intertropical convergence zone studied with an interacting atmosphere and ocean model. Mon. Wea. Rev., 99 , 469477.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2000: The Hadley circulation as a radiative-convective instability. J. Atmos. Sci., 57 , 12861297.

  • Raymond, D. J., and X. Zeng, 2005: Modelling tropical atmospheric convection in the context of the weak temperature gradient approximation. Quart. J. Roy. Meteor. Soc., 131 , 13011320.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., C. S. Bretherton, and J. Molinari, 2006: Dynamics of the intertropical convergence zone of the east Pacific. J. Atmos. Sci., 63 , 582597.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., H. H. Hendon, K. Woodberry, and K. Tanaka, 1991: Analysis of global cloud imagery from multiple satellites. Bull. Amer. Meteor. Soc., 72 , 467480.

    • Search Google Scholar
    • Export Citation
  • Sessions, S. L., S. Sugaya, D. J. Raymond, and A. H. Sobel, 2010: Multiple equilibria in a cloud resolving model. J. Geophys. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian longitude during southwest monsoon. Mon. Wea. Rev., 108 , 18401853.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., 2007: Simple models of ensemble-averaged precipitation and surface wind, given the SST. The Global Circulation of the Atmosphere, T. Schneider, and A. H. Sobel, Eds., Princeton University Press, 219–251.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13 , 43784392.

  • Sobel, A. H., and J. D. Neelin, 2006: The boundary layer contribution to intertropical convergence zones in the quasi-equilibrium tropical circulation model framework. Theor. Comput. Fluid Dyn., 20 , 323350.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and G. Bellon, 2009: The effect of imposed drying on parameterized deep convection. J. Atmos. Sci., 66 , 20852096.

  • Sobel, A. H., G. Bellon, and J. T. Bacmeister, 2007: Multiple equilibria in a single-column model of the tropical atmosphere. Geophys. Res. Lett., 34 , L22804. doi:10.1029/2007GL031320.

    • Search Google Scholar
    • Export Citation
  • Sumi, A., 1992: Pattern formation of convective activity over the aqua-planet with globally uniform sea surface temperature (SST). J. Meteor. Soc. Japan, 70 , 855876.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and D. S. Battisti, 2007: Processes controlling the mean tropical Pacific precipitation pattern. Part I: The Andes and the eastern Pacific ITCZ. J. Climate, 20 , 34343451.

    • Search Google Scholar
    • Export Citation
  • Terray, L., 1998: Sensitivity of climate drift to atmospheric physical parameterizations in a coupled ocean–atmosphere general circulation model. J. Climate, 11 , 16331658.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and R. C. J. Somerville, 1994: The preferred latitudes of the intertropical convergence zone. J. Atmos. Sci., 51 , 16191639.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., 2005: The shape of continents, air–sea interaction, and the rising branch of the Hadley circulation. The Hadley Circulation: Past, Present and Future, H. Diaz and R. Bradley, Eds., Cambridge University Press, 489–511.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., and M. Seki, 1997: Causes of equatorial asymmetry in sea surface temperature over the eastern Pacific. Geophys. Res. Lett., 24 , 25812584.

    • Search Google Scholar
    • Export Citation
  • Xu, H. M., Y. Q. Wang, and S. P. Xie, 2004: Effects of the Andes on eastern Pacific climate: A regional atmospheric model study. J. Climate, 17 , 589602.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., J. D. Neelin, and C. Chou, 2000: A quasi-equilibrium tropical circulation model–implementation and simulation. J. Atmos. Sci., 57 , 17671796.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and H. J. Wang, 2006: Toward mitigating the double ITCZ problem in NCAR CCSM3. Geophys. Res. Lett., 33 , L06709. doi:10.1029/2005GL025229.

    • Search Google Scholar
    • Export Citation
  • Zhang, X. H., W. Y. Lin, and M. H. Zhang, 2007: Toward understanding the double intertropical convergence zone pathology in coupled ocean–atmosphere general circulation models. J. Geophys. Res., 112 , D12102. doi:10.1029/2006JD007878.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1 1 1
PDF Downloads 1 1 1

Multiple Equilibria of the Hadley Circulation in an Intermediate-Complexity Axisymmetric Model

View More View Less
  • 1 Centre National de Recherches Météorologiques, Météo-France, Toulouse, France
  • | 2 Department of Applied Physics and Applied Mathematics, and Department of Earth and Environmental Sciences, Columbia University, New York, New York
Restricted access

Abstract

A model of intermediate complexity based on quasi-equilibrium theory—a version of the Quasi-Equilibrium Tropical Circulation Model with a prognostic atmospheric boundary layer, as well as two free-tropospheric modes in momentum, and one each in moisture and temperature—is used in a zonally symmetric aquaplanet configuration to study the sensitivity of the Hadley circulation to the sea surface temperature (SST) latitudinal distribution. For equatorially symmetric SST forcing with large SST gradients in the tropics, the model simulates the classical double Hadley cell with one equatorial intertropical convergence zone (ITCZ). For small SST gradients in the tropics, the model exhibits multiple equilibria, with one equatorially symmetric equilibrium and two asymmetric equilibria (mirror images of each other) with an off-equatorial ITCZ.

Further investigation of the feedbacks at play in the model shows that the assumed vertical structure of temperature variations is crucial to the existence and stability of the asymmetric equilibria. The free-tropospheric moisture–convection feedback must also be sufficiently strong to sustain asymmetric equilibria. Both results suggest that the specific physics of a given climate model condition determine the existence of multiple equilibria via the resulting sensitivity of the convection to free-tropospheric humidity and the vertical structure of adiabatic heating. The symmetry-breaking mechanism and resulting multiple equilibria have their origin in the local multiple equilibria that can be described by a single-column model using the weak temperature gradient approximation.

An additional experiment using an SST latitudinal distribution with a relative minimum at the equator shows that the feedbacks controlling these multiple equilibria might be relevant to the double-ITCZ problem.

Corresponding author address: Gilles Bellon, Centre National de Recherches Météorologiques, 42, avenue Gaspard Coriolis, 31057 Toulouse, France. Email: gilles.bellon@meteo.fr

Abstract

A model of intermediate complexity based on quasi-equilibrium theory—a version of the Quasi-Equilibrium Tropical Circulation Model with a prognostic atmospheric boundary layer, as well as two free-tropospheric modes in momentum, and one each in moisture and temperature—is used in a zonally symmetric aquaplanet configuration to study the sensitivity of the Hadley circulation to the sea surface temperature (SST) latitudinal distribution. For equatorially symmetric SST forcing with large SST gradients in the tropics, the model simulates the classical double Hadley cell with one equatorial intertropical convergence zone (ITCZ). For small SST gradients in the tropics, the model exhibits multiple equilibria, with one equatorially symmetric equilibrium and two asymmetric equilibria (mirror images of each other) with an off-equatorial ITCZ.

Further investigation of the feedbacks at play in the model shows that the assumed vertical structure of temperature variations is crucial to the existence and stability of the asymmetric equilibria. The free-tropospheric moisture–convection feedback must also be sufficiently strong to sustain asymmetric equilibria. Both results suggest that the specific physics of a given climate model condition determine the existence of multiple equilibria via the resulting sensitivity of the convection to free-tropospheric humidity and the vertical structure of adiabatic heating. The symmetry-breaking mechanism and resulting multiple equilibria have their origin in the local multiple equilibria that can be described by a single-column model using the weak temperature gradient approximation.

An additional experiment using an SST latitudinal distribution with a relative minimum at the equator shows that the feedbacks controlling these multiple equilibria might be relevant to the double-ITCZ problem.

Corresponding author address: Gilles Bellon, Centre National de Recherches Météorologiques, 42, avenue Gaspard Coriolis, 31057 Toulouse, France. Email: gilles.bellon@meteo.fr

Save