• Braun, M., A. Humbert, and A. Moll, 2009: Changes in the Wilkins ice shelf over the past 15 years and inferences on its stability. Cryosphere, 3 , 4156.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., R. L. Fogt, K. I. Hodges, and J. E. Walsh, 2007: A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J. Geophys. Res., 112 , D10111. doi:10.1029/2006JD007859.

    • Search Google Scholar
    • Export Citation
  • Chapman, W. L., and J. E. Walsh, 2007: A synthesis of Antarctic temperatures. J. Climate, 20 , 609632.

  • Charbit, S., D. Paillard, and G. Ramstein, 2008: Amount of CO2 emissions irreversibly leading to the total melting of Greenland. Geophys. Res. Lett., 35 , L12503. doi:10.1029/2008GL033472.

    • Search Google Scholar
    • Export Citation
  • Copland, L., D. R. Mueller, and L. Weir, 2007: Rapid loss of the Ayles ice shelf, Ellesmere Island, Canada. Geophys. Res. Lett., 34 , L21501. doi:10.1029/2007GL031809.

    • Search Google Scholar
    • Export Citation
  • Domack, E., and Coauthors, 2005: Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature, 436 , 681685. doi:10.1038/nature03908.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., D. A. Stone, P. A. Stott, T. Nozawa, A. Yu Karpechko, G. C. Hegerl, M. F. Wehner, and P. D. Jones, 2008: Attribution of polar warming to human influence. Nat. Geosci., 1 , 750754. doi:10.1038/ngeo338.

    • Search Google Scholar
    • Export Citation
  • Holland, D. M., R. H. Thomas, B. Young, M. H. Ribergaard, and B. Lybert, 2008a: Acceleration of Jakobshavn Isbr triggered by warm subsurface ocean waters. Nat. Geosci., 1 , 659664. doi:10.1038/ngeo316.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., A. Jenkins, and D. M. Holland, 2008b: Response of ice shelf basal melting to variations in ocean temperature. J. Climate, 21 , 25582572.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds. 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Marland, G., T. Boden, and R. Andres, 2008: Global, regional, and national CO2 emissions. Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. [Available online at http://cdiac.ornl.gov/trends/emis/em_cont.html].

    • Search Google Scholar
    • Export Citation
  • Meehl, G., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Mercer, J., 1978: West Antarctic ice sheet and CO2 greenhouse effect: A threat of disaster. Nature, 271 , 321325. doi:10.1038/271321a0.

    • Search Google Scholar
    • Export Citation
  • Mueller, D. R., W. F. Vincent, and M. O. Jeffries, 2003: Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophys. Res. Lett., 30 , 2031. doi:10.1029/2003GL017931.

    • Search Google Scholar
    • Export Citation
  • Naish, T., and Coauthors, 2009: Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature, 458 , 322329. doi:10.1038/nature07867.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1995: MOM 2 documentation user’s guide and reference manual. GFDL Ocean Tech. Rep. 3.2, 350 pp. [Available online at http://www.gfdl.noaa.gov/cms-filesystem-action/model_development/ocean/manual2.2.pdf].

    • Search Google Scholar
    • Export Citation
  • Payne, A. J., A. Vieli, A. P. Shepherd, D. J. Wingham, and E. Rignot, 2004: Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophys. Res. Lett., 31 , L23401. doi:10.1029/2004GL021284.

    • Search Google Scholar
    • Export Citation
  • Pollard, D., and R. M. DeConto, 2009: Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature, 458 , 329332. doi:10.1038/nature07809.

    • Search Google Scholar
    • Export Citation
  • Randall, D., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 590–661.

    • Search Google Scholar
    • Export Citation
  • Ridley, J. K., P. Huybrechts, J. M. Gregory, and J. A. Lowe, 2005: Elimination of the Greenland Ice Sheet in a high CO2 climate. J. Climate, 18 , 34093427.

    • Search Google Scholar
    • Export Citation
  • Rogner, H., 1997: An assessment of world hydrocarbon resources. Annu. Rev. Energy Environ., 22 , 217262.

  • Scambos, T., C. Hulbe, M. Fahnestock, and J. Bohlander, 2000: The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol., 46 , 516530.

    • Search Google Scholar
    • Export Citation
  • Scambos, T., C. Hulbe, and M. Fahnestock, 2003: Climate-induced ice shelf disintegration in the Antarctic Peninsula. Antarct. Res. Ser., 79 , 7992.

    • Search Google Scholar
    • Export Citation
  • Scambos, T., J. A. Bohlander, C. A. Shuman, and P. Skvarca, 2004: Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett., 31 , L18402. doi:10.1029/2004GL020670.

    • Search Google Scholar
    • Export Citation
  • Scambos, T., H. A. Fricker, C-C. Liu, J. Bohlander, J. Fastook, A. Sargent, R. Massom, and A-M. Wu, 2009: Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results for the 2008 Wilkins ice shelf break-ups. Earth Planet. Sci. Lett., 280 , 5160. doi:10.1016/j.epsl.2008.12.027.

    • Search Google Scholar
    • Export Citation
  • Shepherd, A., D. Wingham, T. Payne, and P. Skvarca, 2003: Larsen ice shelf has progressively thinned. Science, 302 , 856859. doi:10.1126/science.1089768.

    • Search Google Scholar
    • Export Citation
  • Tedesco, M., 2008: Updated 2008 surface snowmelt trends in Antarctica. Eos, Trans. Amer. Geophys. Union, 89 .doi:10.1029/2008EO130002.

  • van den Broeke, M., 2005: Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys. Res. Lett., 32 , L12815. doi:10.1029/2005GL023247.

    • Search Google Scholar
    • Export Citation
  • Vaughan, D., 2006: Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance and sea level. Arct. Antarct. Alp. Res., 38 , 147152.

    • Search Google Scholar
    • Export Citation
  • Vaughan, D., and C. Doake, 1996: Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature, 379 , 328331.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and Coauthors, 2001: The UVic Earth System Climate Model: Model description, climatology and application to past, present and future climates. Atmos.–Ocean, 39 , 361428.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., K. Zickfeld, A. Montenegro, and M. Eby, 2007: Long term climate implications of 2050 emission reduction targets. Geophys. Res. Lett., 34 , L19703. doi:10.1029/2007GL031018.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 3 3 3

Surface Melting over Ice Shelves and Ice Sheets as Assessed from Modeled Surface Air Temperatures

View More View Less
  • 1 Victoria University of Wellington, Wellington, New Zealand
  • | 2 School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
Restricted access

Abstract

Summer surface melting plays an important role in the evolution of ice shelves and their progenitor ice sheets. To explore the magnitude of surface melt occurring over modern ice shelves and ice sheets in a climate scenario forced by anthropogenic emissions of carbon dioxide (CO2), a coupled climate model was used to simulate the distribution of summer melt at high latitudes and project the future evolution of high-melt regions in both hemispheres. Forcing of the climate model with CO2 emissions resulting from combustion of the present-day fossil-fuel resource base resulted in expansion of high-melt regions, as defined by the contour marking 200 positive degree-days per year, in the Northern Hemisphere and the Antarctic Peninsula and the introduction of high summer melt over the Ross, Ronne-Filchner, and Amery ice shelves as well as a large portion of the West Antarctic Ice Sheet (WAIS) and most of the Greenland Ice Sheet (GIS) by the year 2500. Capping CO2 concentrations at present-day levels avoided significant summer melt over the large Antarctic shelves, the WAIS, and much of the GIS.

Corresponding author address: Jeremy G. Fyke, Antarctic Research Centre, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand. Email: fykejere@student.vuw.ac.nz

Abstract

Summer surface melting plays an important role in the evolution of ice shelves and their progenitor ice sheets. To explore the magnitude of surface melt occurring over modern ice shelves and ice sheets in a climate scenario forced by anthropogenic emissions of carbon dioxide (CO2), a coupled climate model was used to simulate the distribution of summer melt at high latitudes and project the future evolution of high-melt regions in both hemispheres. Forcing of the climate model with CO2 emissions resulting from combustion of the present-day fossil-fuel resource base resulted in expansion of high-melt regions, as defined by the contour marking 200 positive degree-days per year, in the Northern Hemisphere and the Antarctic Peninsula and the introduction of high summer melt over the Ross, Ronne-Filchner, and Amery ice shelves as well as a large portion of the West Antarctic Ice Sheet (WAIS) and most of the Greenland Ice Sheet (GIS) by the year 2500. Capping CO2 concentrations at present-day levels avoided significant summer melt over the large Antarctic shelves, the WAIS, and much of the GIS.

Corresponding author address: Jeremy G. Fyke, Antarctic Research Centre, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand. Email: fykejere@student.vuw.ac.nz

Save