• Behringer, D., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3. [Available online at http://ams.confex.com/ams/pdfpapers/70720.pdf].

    • Search Google Scholar
    • Export Citation
  • Berliand, M. E., and T. G. Berliand, 1952: Determining the net long-wave radiation of the Earth with consideration of the effect of cloudiness. Isv. Akad. Nauk. SSSR Ser. Geofiz., 1 , 6478.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2009: A new air–sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90 , 645656.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136 , 29993017.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1995: Absorption of solar radiation by clouds: Observation versus models. Science, 267 , 496499.

  • Chin, T., R. Miliff, and W. Large, 1998: Basin-scale high-wavenumber sea surface wind fields from multiresolution analysis of scatterometer data. J. Atmos. Oceanic Technol., 15 , 741763.

    • Search Google Scholar
    • Export Citation
  • Clark, N. E., R. M. Eber, J. A. Renner, and J. F. T. Saur, 1974: Heat exchange between ocean and atmosphere in the eastern North Pacific for 1961-71. NOAA Tech. Rep. NMFS SSRF-682, 108 pp.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., C. W. Fairall, and M. J. McPhaden, 2006: An assessment of buoy-derived and numerical weather prediction surface heat fluxes in the tropical Pacific. J. Geophys. Res., 111 , C06038. doi:10.1029/2005JC003324.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and Coauthors, 2004: SEAFLUX. Bull. Amer. Meteor. Soc., 85 , 409424.

  • Dai, F., R. Yu, X. Zhang, Y. Yu, and J. Li, 2003: The impact of low-level cloud over the eastern subtropical Pacific on the “double ITCZ” in LASG FGCM-0. Adv. Atmos. Sci., 20 , 461474.

    • Search Google Scholar
    • Export Citation
  • da Silva, A., C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 83 pp.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., C. S. Bretherton, N. A. Bond, M. F. Cronin, and B. M. Morley, 2005: EPIC 95°W observations of the eastern Pacific atmospheric boundary layer from the cold tongue to the ITCZ. J. Atmos. Sci., 62 , 426442.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for tropical ocean–global atmosphere coupled ocean–atmosphere response experiment. J. Geophys. Res., 101 , 37473767.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571590.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. E. Hare, T. Uttal, D. Hazen, M. Cronin, N. A. Bond, and D. Veron, 2008: A seven-cruise sample of clouds, radiation, and surface forcing in the equatorial eastern Pacific. J. Climate, 21 , 655673.

    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., P. Kallberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ECMWF Reanalysis Project Rep. Series 1, European Centre for Medium Range Weather Forecasts, Reading, United Kingdom, 71 pp.

    • Search Google Scholar
    • Export Citation
  • Grist, J., and S. Josey, 2003: Inverse analysis adjustment of the SOC air–sea flux climatology using ocean heat transport constraints. J. Climate, 16 , 32743295.

    • Search Google Scholar
    • Export Citation
  • Ji, M., A. Leetmaa, and J. Derber, 1995: An ocean analysis system for seasonal to interannual climate studies. Mon. Wea. Rev., 123 , 460481.

    • Search Google Scholar
    • Export Citation
  • Jin, Z., T. Charlock, W. Smith Jr., and K. Rutledge, 2004: A parameterization of ocean surface albedo. Geophys. Res. Lett., 31 , L22301. doi:10.1029/2004GL021180.

    • Search Google Scholar
    • Export Citation
  • Josey, S., E. Kent, and P. Taylor, 1998: The Southampton Oceanography Centre (SOC) ocean–atmosphere heat, momentum and freshwater flux atlas. Tech. Rep. 6, Southampton Oceanography Centre, 306 pp.

    • Search Google Scholar
    • Export Citation
  • Josey, S., E. Kent, and P. Taylor, 1999: New insights into the ocean heat budget closure problem from analysis of the SOC air–sea flux climatology. J. Climate, 12 , 28562880.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Large, W. G., and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12 , 464482.

  • Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea ice models: The data sets and climatologies. Tech. Rep. TN-460+STR, NCAR, 105 pp.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2008: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 24 , 341364. doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Lee, T., I. Fukumori, and B. Tang, 2004: Temperature advection: Internal versus external processes. J. Phys. Oceanogr., 34 , 19361944.

    • Search Google Scholar
    • Export Citation
  • Lin, J., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20 , 44974525.

  • Ma, C. C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean–atmosphere GCM study. J. Climate, 9 , 16351645.

    • Search Google Scholar
    • Export Citation
  • Manganello, J., and B. Huang, 2009: The influence of systematic errors in the southeast Pacific on ENSO variability and prediction in a coupled GCM. Climate Dyn., 32 , 10151034.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean–Global Atmosphere (TOGA) observing system: A decade of progress. J. Geophys. Res., 103 , (C7). 1416914240.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123 , 38253838.

    • Search Google Scholar
    • Export Citation
  • Oberhuber, J. M., 1988: An atlas based on COADS data set: The budgets of heat buoyancy and turbulent kinetic energy at the surface of the global ocean. Tech. Rep. 15, Max-Planck-Institut für Meteorologie, 20 pp.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., B. Subasilar, G. J. Zhang, W. Conant, R. D. Cess, J. T. Kiehl, H. Grassl, and L. Shi, 1995: Warm pool heat budget and shortwave cloud forcing: A missing physics? Science, 267 , 499502.

    • Search Google Scholar
    • Export Citation
  • Reed, R. K., 1977: On estimating insolation over the ocean. J. Phys. Oceanogr., 7 , 482485.

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Rosati, A., and K. Miyakoda, 1988: A general circulation model for upper ocean simulations. J. Phys. Oceanogr., 18 , 16011626.

  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93 , (C12). 1546715472.

    • Search Google Scholar
    • Export Citation
  • Song, X., and G. J. Zhang, 2009: Convection parameterization, tropical Pacific double ITCZ, and upper-ocean biases in the NCAR CCSM3. Part I: Climatology and atmospheric feedback. J. Climate, 22 , 42994315.

    • Search Google Scholar
    • Export Citation
  • Stevenson, J., and P. Niiler, 1983: Upper ocean heat budget during the Hawaii-to-Tahiti shuttle experiment. J. Phys. Oceanogr., 13 , 18941907.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., Ed. 2000: Intercomparison and validation of ocean–atmosphere energy flux fields. Final Rep. of the Joint WCRP/SCOR Working Group on Air–Sea Fluxes. WCRP-112, WMO/TD-1036, 306 pp.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., S. A. Josey, and E. C. Kent, 1999: A comparison of climatological, model derived and observed air–sea flux values for the COARE area. Proc. Conf. on the TOGA Coupled Ocean-Atmosphere Response Experiment (COARE), Vol. WCRP-107, WMO/TD 940, Boulder, CO, WMO, 249–250.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and L. Smith, 2008: The three dimensional structure of the atmospheric energy budget: Methodology and evaluation. Climate Dyn., 32 , 10651079. doi:10.1007/s00382-008-0389-3.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Weller, R., and S. Anderson, 1996: Surface meteorology and air–sea fluxes in the western equatorial pacific warm pool during the TOGA Coupled Ocean–Atmosphere Response Experiment. J. Climate, 9 , 19591990.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., R. J. Slutz, R. L. Jenne, and P. M. Steurer, 1987: A comprehensive ocean–atmosphere data set. Bull. Amer. Meteor. Soc., 68 , 12391250.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., S. J. Lubker, K. Wolter, S. J. Worley, and J. D. Elms, 1993: Comprehensive Ocean–Atmosphere Data Set (COADS) release 1a: 1980–92. Earth Syst. Monit., 4 , 48.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., H. F. Diaz, J. D. Elms, and S. J. Worley, 1998: COADS release 2 data and metadata enhancements for improvements of marine surface flux fields. Phys. Chem. Earth, 23 , 517526.

    • Search Google Scholar
    • Export Citation
  • Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lott, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25 , 823842.

    • Search Google Scholar
    • Export Citation
  • Wright, P. B., 1988: An atlas based on the COADS data set: Fields of mean wind, cloudiness and humidity at the surface of the global ocean. Rep. 14 Max-Planck-Institut für Meteorologie, 73 pp.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2007: Practical global ocean state estimation. Physica D, 230 , 197208. doi:10.1016/j.physd.2006.09.040.

  • Yu, J. Y., and C. R. Mechoso, 1999: Links between annual variations of Peruvian stratocumulus clouds and of SST in the eastern equatorial Pacific. J. Climate, 12 , 33053318.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. Weller, 2008: Mutidecade global flux datasets from the objectively analyzed air–sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Tech. Rep. OA-2008-01, Woods Hole Oceanographic Institution, 64 pp.

    • Search Google Scholar
    • Export Citation
  • Yu, R., M. Zhang, and R. D. Cess, 1999: Analysis of the atmospheric energy budget: A consistency study of available data sets. J. Geophys. Res., 104 , 96559661.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., W. Lin, and M. Zhang, 2007: Toward understanding the double intertropical convergence zone pathology in coupled ocean–atmosphere general circulation models. J. Geophys. Res., 112 , D12102. doi:10.1029/2006JD007878.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109 , D19105. doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 13 13 13
PDF Downloads 7 7 7

Heat Budget of the Upper Ocean in the South-Central Equatorial Pacific

View More View Less
  • 1 State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 Institute for Terrestrial and Planetary Atmospheres, Stony Brook University, Stony Brook, New York
Restricted access

Abstract

The double intertropical convergence zone (ITCZ) over the tropical Pacific, with a spurious band of maximum annual sea surface temperature (SST) south of the equator between 5°S and 10°S, is a chronic bias in coupled ocean–atmosphere models. This study focuses on a region of the double ITCZ in the central Pacific from 5°S to 10°S and 170°E to 150°W, where coupled models display the largest biases in precipitation, by deriving a best estimate of the mixed layer heat budget for the region. Seven global datasets of objectively analyzed surface energy fluxes and four ocean assimilation products are first compared and then evaluated against field measurements in adjacent regions. It was shown that the global datasets differ greatly in their net downward surface energy flux in this region, but they fall broadly into two categories: one with net downward heat flux of about 30 W m−2 and the other around 10 W m−2. Measurements from the adjacent Manus and Nauru sites of the Atmospheric Radiation Measurement Program (ARM), the Tropical Atmosphere Ocean (TAO) buoys, and the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) are then used to show that the smaller value is more realistic. An energy balance of the mixed layer is finally presented for the region as primarily between warming from surface heat flux of 7 W m−2 and horizontal advective cooling in the zonal direction of about 5 W m−2, with secondary contributions from meridional and vertical advections, heat storage, and subgrid-scale mixing. The 7 W m−2 net surface heat flux consists of warming of 210 W m−2 from solar radiation and cooling of 53, 141, and 8 W m−2, respectively, from longwave radiation, latent heat flux, and sensible heat flux. These values provide an observational basis to further study the initial development of excessive precipitation in coupled climate models in the central Pacific.

Corresponding author address: Hailong Liu, No. 40, Hua Yan Li, Beijing 100029, China. Email: lhl@lasg.iap.ac.cn

Abstract

The double intertropical convergence zone (ITCZ) over the tropical Pacific, with a spurious band of maximum annual sea surface temperature (SST) south of the equator between 5°S and 10°S, is a chronic bias in coupled ocean–atmosphere models. This study focuses on a region of the double ITCZ in the central Pacific from 5°S to 10°S and 170°E to 150°W, where coupled models display the largest biases in precipitation, by deriving a best estimate of the mixed layer heat budget for the region. Seven global datasets of objectively analyzed surface energy fluxes and four ocean assimilation products are first compared and then evaluated against field measurements in adjacent regions. It was shown that the global datasets differ greatly in their net downward surface energy flux in this region, but they fall broadly into two categories: one with net downward heat flux of about 30 W m−2 and the other around 10 W m−2. Measurements from the adjacent Manus and Nauru sites of the Atmospheric Radiation Measurement Program (ARM), the Tropical Atmosphere Ocean (TAO) buoys, and the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) are then used to show that the smaller value is more realistic. An energy balance of the mixed layer is finally presented for the region as primarily between warming from surface heat flux of 7 W m−2 and horizontal advective cooling in the zonal direction of about 5 W m−2, with secondary contributions from meridional and vertical advections, heat storage, and subgrid-scale mixing. The 7 W m−2 net surface heat flux consists of warming of 210 W m−2 from solar radiation and cooling of 53, 141, and 8 W m−2, respectively, from longwave radiation, latent heat flux, and sensible heat flux. These values provide an observational basis to further study the initial development of excessive precipitation in coupled climate models in the central Pacific.

Corresponding author address: Hailong Liu, No. 40, Hua Yan Li, Beijing 100029, China. Email: lhl@lasg.iap.ac.cn

Save