• Bacmeister, J., P. J. Pegion, S. D. Schubert, and M. J. Suarez, 2000: An atlas of seasonal means simulated by the NSIPP 1 atmospheric GCM. Vol. 17, NASA Tech. Memo. 104606, Goddard Space Flight Center, 194 pp.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. H. Berbery, 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and streamflow. J. Climate, 14 , 21052128.

    • Search Google Scholar
    • Export Citation
  • Campana, K., and P. Caplan, Eds., cited. 2005: Technical procedure bulletin for T382 Global Forecast System. [Available online at http://www.emc.ncep.noaa.gov/gc_wmb/Documentation/TPBoct05/T382.TPB.FINAL.htm].

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Enfield, D., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28 , 20772080.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Ting, and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15 , 21252144.

  • Higgins, R. W., A. Leetmaa, Y. Xue, and A. Barnston, 2000: Dominant factors influencing the seasonal predictability of U.S. precipitation and surface air temperature. J. Climate, 13 , 39944017.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and A. Kumar, 2003: The perfect ocean for drought. Science, 299 , 691694.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kiehl, J. T., J. J. Hack, G. Bonan, B. A. Boville, D. Williamson, and P. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 2004: Suggestions in the observational record of land–atmosphere feedback operating at seasonal time scales. J. Hydrometeor., 5 , 567572.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, and M. Heiser, 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1 , 2646.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, R. W. Higgins, and H. M. van den Dool, 2003: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett., 30 , 1241. doi:10.1029/2002GL016571.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006a: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7 , 590610.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, and S. D. Schubert, 2006b: Distinct hydrological signatures in observed historical temperature fields. J. Hydrometeor., 7 , 10611074.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., A. Leetmaa, M. J. Nath, and H-L. Wang, 2005: Influences of ENSO-induced Indo–western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. J. Climate, 18 , 29222942.

    • Search Google Scholar
    • Export Citation
  • Lee, M-I., S. D. Schubert, M. J. Suarez, T. Bell, and K-M. Kim, 2007: The diurnal cycle of precipitation in the NASA/NSIPP atmospheric general circulation model. J. Geophys. Res., 112 , D16111. doi:10.1029/2006JD008346.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101 , 41364141.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and J. E. Schemm, 2008: Relationships between ENSO and drought over the southeastern United States. Geophys. Res. Lett., 35 , L15701. doi:10.1029/2008GL034656.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., J. E. Schemm, and S-H. Yoo, 2009: Influence of ENSO and the Atlantic multidecadal oscillation on drought over the United States. J. Climate, 22 , 59625982.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1983: Some causes of United States drought. J. Climate Appl. Meteor., 22 , 3039.

  • Nigam, S., and A. Ruiz-Barradas, 2006: Seasonal hydroclimate variability over North America in global and regional reanalyses and AMIP simulations: Varied representation. J. Climate, 19 , 815837.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113 , G01021. doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Pegion, P., S. Schubert, and M. J. Suarez, 2000: An assessment of the predictability of northern winter seasonal means with the NSIPP1 AGCM. NASA Tech. Memo. 2000-104606, Vol. 18, 100 pp.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Roads, J., M. Kanamitsu, and R. Stewart, 2002: CSE water and energy budgets in the NCEP–DOE Reanalysis II. J. Hydrometeor., 3 , 227248.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño–Southern Oscillation (ENSO). Mon. Wea. Rev., 114 , 23522362.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, M. A. Kistler, and A. Kumer, 2002: Predictability of zonal means during boreal summer. J. Climate, 15 , 420434.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004a: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17 , 485503.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004b: On the cause of the 1930s dust bowl. Science, 303 , 18551859.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and Coauthors, 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22 , 52515272.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18 , 40654088.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Graham, C. Herweijer, A. L. Gordon, Y. Kushnir, and E. Cook, 2007: Blueprints for Medieval hydroclimate. Quat. Sci. Rev., 26 , (19–21). 23222336. doi:10.1016/j.quascirev.2007.04.020.

    • Search Google Scholar
    • Export Citation
  • Stöckli, R., and Coauthors, 2008: Use of FLUXNET in the Community Land Model development. J. Geophys. Res., 113 , G01025. doi:10.1029/2007JG000562.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309 , 115118.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and H. Wang, 1997: Summertime U.S. precipitation variability and its relation to Pacific sea surface temperature. J. Climate, 10 , 18531873.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and L. Yu, 1998: Steady response to tropical heating in wavy linear and nonlinear baroclinic models. J. Atmos. Sci., 55 , 35653582.

    • Search Google Scholar
    • Export Citation
  • Ting, M., H. L. Wang, and L. H. Yu, 2001: Nonlinear stationary wave maintenance and seasonal cycle in the GFDL R30 GCM. J. Atmos. Sci., 58 , 23312354.

    • Search Google Scholar
    • Export Citation
  • Wang, H., S. Schubert, M. Suarez, J. Chen, M. Hoerling, A. Kumar, and P. Pegion, 2009: Attribution of seasonality and regionality of climate trends over the United States during 1950–2000. J. Climate, 22 , 25712590.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 6 6 6

The Physical Mechanisms by Which the Leading Patterns of SST Variability Impact U.S. Precipitation

View More View Less
  • 1 Global Modeling and Assimilation Office, Science and Exploration Directorate, NASA Goddard Space Flight Center, Greenbelt, and Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland
  • | 2 Global Modeling and Assimilation Office, Science and Exploration Directorate, NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

This study uses the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) AGCM to investigate the physical mechanisms by which the leading patterns of annual mean SST variability impact U.S. precipitation. The focus is on a cold Pacific pattern and a warm Atlantic pattern that exert significant drought conditions over the U.S. continent. The precipitation response to the cold Pacific is characterized by persistent deficits over the Great Plains that peak in summer with a secondary peak in spring, and weakly pluvial conditions in summer over the Southeast (SE). The precipitation response to the warm Atlantic is dominated by persistent deficits over the Great Plains with the maximum deficit occurring in late summer. The precipitation response to the warm Atlantic is overall similar to the response to the cold Pacific with, however, considerably weaker amplitude.

An analysis of the atmospheric moisture budget combined with a stationary wave model diagnosis of the associated atmospheric circulation anomalies is conducted to investigate mechanisms of the precipitation responses. A key result is that, while the cold Pacific and warm Atlantic are two spatially distinct SST patterns, they nevertheless produce similar diabatic heating anomalies over the Gulf of Mexico during the warm season. In the case of the Atlantic forcing, the heating anomalies are a direct response to the SST anomalies, whereas in the case of Pacific forcing they are a secondary response to circulation anomalies forced from the tropical Pacific. The diabatic heating anomalies in both cases force an anomalous low-level cyclonic flow over the Gulf of Mexico that leads to reduced moisture transport into the central United States and increased moisture transport into the eastern United States. The precipitation deficits over the Great Plains in both cases are greatly amplified by the strong soil moisture feedback in the NSIPP-1 AGCM. In contrast, the response over the SE to the cold Pacific during spring is primarily associated with an upper-tropospheric high anomaly over the southern United States that is remotely forced by tropical Pacific diabatic heating anomalies, leading to greatly reduced stationary moisture flux convergences and anomalous subsidence in that region. Moderately reduced evaporation and weakened transient moisture flux convergences play secondary roles. It is only during spring that these three terms are all negative and constructively contribute to produce the maximum dry response in spring.

The above findings based on the NSIPP-1 AGCM are generally consistent with observations, as well as with four other AGCMs included in the U.S. Climate Variability and Predictability (CLIVAR) project.

Corresponding author address: Hailan Wang, Global Modeling and Assimilation Office (UMBC/GEST), Code 610.1, NASA Goddard Space Flight Center, Greenbelt, MD 20771. Email: hailan.wang@nasa.gov

This article included in the CLIVAR - Western Boundary Currents special collection and the U.S. CLIVAR Drought special collection.

Abstract

This study uses the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) AGCM to investigate the physical mechanisms by which the leading patterns of annual mean SST variability impact U.S. precipitation. The focus is on a cold Pacific pattern and a warm Atlantic pattern that exert significant drought conditions over the U.S. continent. The precipitation response to the cold Pacific is characterized by persistent deficits over the Great Plains that peak in summer with a secondary peak in spring, and weakly pluvial conditions in summer over the Southeast (SE). The precipitation response to the warm Atlantic is dominated by persistent deficits over the Great Plains with the maximum deficit occurring in late summer. The precipitation response to the warm Atlantic is overall similar to the response to the cold Pacific with, however, considerably weaker amplitude.

An analysis of the atmospheric moisture budget combined with a stationary wave model diagnosis of the associated atmospheric circulation anomalies is conducted to investigate mechanisms of the precipitation responses. A key result is that, while the cold Pacific and warm Atlantic are two spatially distinct SST patterns, they nevertheless produce similar diabatic heating anomalies over the Gulf of Mexico during the warm season. In the case of the Atlantic forcing, the heating anomalies are a direct response to the SST anomalies, whereas in the case of Pacific forcing they are a secondary response to circulation anomalies forced from the tropical Pacific. The diabatic heating anomalies in both cases force an anomalous low-level cyclonic flow over the Gulf of Mexico that leads to reduced moisture transport into the central United States and increased moisture transport into the eastern United States. The precipitation deficits over the Great Plains in both cases are greatly amplified by the strong soil moisture feedback in the NSIPP-1 AGCM. In contrast, the response over the SE to the cold Pacific during spring is primarily associated with an upper-tropospheric high anomaly over the southern United States that is remotely forced by tropical Pacific diabatic heating anomalies, leading to greatly reduced stationary moisture flux convergences and anomalous subsidence in that region. Moderately reduced evaporation and weakened transient moisture flux convergences play secondary roles. It is only during spring that these three terms are all negative and constructively contribute to produce the maximum dry response in spring.

The above findings based on the NSIPP-1 AGCM are generally consistent with observations, as well as with four other AGCMs included in the U.S. Climate Variability and Predictability (CLIVAR) project.

Corresponding author address: Hailan Wang, Global Modeling and Assimilation Office (UMBC/GEST), Code 610.1, NASA Goddard Space Flight Center, Greenbelt, MD 20771. Email: hailan.wang@nasa.gov

This article included in the CLIVAR - Western Boundary Currents special collection and the U.S. CLIVAR Drought special collection.

Save