• Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64 , 23322354.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50 , 29222939.

  • Chao, W. C., 1987: On the origin of the tropical intraseasonal oscillation. J. Atmos. Sci., 44 , 19401949.

  • Chao, W. C., and B. Chen, 2001: The role of surface friction in tropical intraseasonal oscillation. Mon. Wea. Rev., 129 , 896904.

  • Chen, Y., and A. D. Del Genio, 2008: Evaluation of tropical cloud regimes in observations and a general circulation model. Climate Dyn., 32 , 355369. doi:10.1007/s00382-008-0386-6.

    • Search Google Scholar
    • Export Citation
  • Chou, S-H., E. Nelkin, J. Ardizzone, R. Atlas, and C-L. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrievals, version 2 (GSSTF2). J. Climate, 16 , 32563273.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44 , 23242340.

  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci., 54 , 23732386.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., G. N. Kiladis, G. A. Meehl, K. M. Weickmann, and M. Wheeler, 1994: The global climate of December 1992–February 1993. Part II: Large-scale variability across the tropical western Pacific during TOGA COARE. J. Climate, 7 , 16061622.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1990: The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47 , 29092924.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., S. S. Chen, D. E. Kingsmill, Y. Serra, and S. E. Yuter, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57 , 30583089.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., and G. Tselioudis, 2003: Objective identification of cloud regimes in the tropical western Pacific. Geophys. Res. Lett., 30 , 2082. doi:10.1029/2003GL018367.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., and C. Schumacher, 2008: Precipitation and latent heating characteristics of the major tropical western Pacific cloud regimes. J. Climate, 21 , 43484364.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kiladis, G. N., and K. M. Weickmann, 1992: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120 , 19001923.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62 , 27902809.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and K. M. Weickmann, 1987: 30–60-day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115 , 14071436.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44 , 950972.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and R. H. Johnson, 1996: Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53 , 695715.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., and W. B. Rossow, 2004: Characterizing tropical cirrus life cycle, evolution, and interaction with upper-tropospheric water vapor using Lagrangian trajectory analysis of satellite observations. J. Climate, 17 , 45414563.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Majda, A. J., S. N. Stechmann, and B. Khouider, 2007: Madden–Julian oscillation analog and intraseasonal variability in a multicloud model above the equator. Proc. Natl. Acad. Sci. USA, 104 , 99199924.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11 , 23872403.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42 , 329. doi:10.1016/j.dynatmoce.2006.03.003.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2000: Propagation mechanisms for the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 126 , 26372651.

  • Milliff, R. F., and R. A. Madden, 1996: The existence and vertical structure of fast, eastward-moving disturbances in the equatorial troposphere. J. Atmos. Sci., 53 , 586597.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61 , 15211538.

    • Search Google Scholar
    • Export Citation
  • Mu, M., and G. J. Zhang, 2008: Energetics of Madden Julian oscillations in the NCAR CAM3: A composite view. J. Geophys. Res., 113 , D05108. doi:10.1029/2007JD008700.

    • Search Google Scholar
    • Export Citation
  • Myers, D. S., and D. E. Waliser, 2003: Three-dimensional water vapor and cloud variations associated with the Madden–Julian oscillation during Northern Hemisphere winter. J. Climate, 16 , 929950.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44 , 23412348.

    • Search Google Scholar
    • Export Citation
  • Pohl, B., and A. J. Matthews, 2007: Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. J. Climate, 20 , 26592674.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58 , 28072819.

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds form ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612287.

  • Rossow, W. B., and C. Pearl, 2007: 22-year survey of tropical convection penetrating into the lower stratosphere. Geophys. Res. Lett., 34 , L04803. doi:10.1029/2006GL028635.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., G. Tselioudis, A. Polak, and C. Jakob, 2005: Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. Res. Lett., 32 , L21812. doi:10.1029/2005GL024584.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., R. R. Garcia, and H. H. Hendon, 1994: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51 , 23442367.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., D. P. Rowell, K. R. Sperber, and F. Nortley, 1999: On the predictability of the interannual behaviour of the Madden–Julian oscillation and its relationship with El Niño. Quart. J. Roy. Meteor. Soc., 125 , 583609.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., P. J. Webster, R. H. Johnson, R. Engelen, and T. L’Ecuyer, 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical sea surface temperature. J. Climate, 17 , 22132224.

    • Search Google Scholar
    • Export Citation
  • Tian, B., D. E. Waliser, and E. Fetzer, 2006: Modulation of the diurnal cycle of tropical deep convective clouds by the MJO. Geophys. Res. Lett., 33 , L20704. doi:10.1029/2006GL027752.

    • Search Google Scholar
    • Export Citation
  • Tung, W-W., and M. Yanai, 2002: Convective momentum transport observed during the TOGA COARE IOP. Part I: General features. J. Atmos. Sci., 59 , 18571871.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial ß plane. J. Atmos. Sci., 47 , 397413.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Y. Xue, 1992: Behavior of a moist Kelvin wave packet with nonlinear heating. J. Atmos. Sci., 49 , 549559.

  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132 , 19171932.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57 , 613640.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., and J. M. Slingo, 2000: The relationship between convection and sea surface temperature on intraseasonal timescales. J. Climate, 13 , 20862104.

    • Search Google Scholar
    • Export Citation
  • Yang, G-Y., B. Hoskins, and J. Slingo, 2003: Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data. J. Atmos. Sci., 60 , 16371654.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1996: Atmospheric intraseasonal variability at the surface in the western Pacific Ocean. J. Atmos. Sci., 53 , 739785.

  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43 , RG2003. doi:10.1029/2004RG000158.

  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109 , D19105. doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 11
PDF Downloads 6 6 6

Interaction of Tropical Deep Convection with the Large-Scale Circulation in the MJO

View More View Less
  • 1 National Oceanic and Atmospheric Administration/Cooperative Remote Sensing of Science and Technology Center, The City College of New York, New York, New York
Restricted access

Abstract

To better understand the interaction between tropical deep convection and the Madden–Julian oscillation (MJO), tropical cloud regimes are defined by cluster analysis of International Satellite Cloud Climatology Project (ISCCP) cloud-top pressure—optical thickness joint distributions from the D1 dataset covering 21.5 yr. An MJO index based solely on upper-level wind anomalies is used to study variations of the tropical cloud regimes. The MJO index shows that MJO events are present almost all the time; instead of the MJO event being associated with “on or off” deep convection, it is associated with weaker or stronger mesoscale organization of deep convection. Atmospheric winds and humidity from NCEP–NCAR reanalysis 1 are used to characterize the large-scale dynamics of the MJO; the results show that the large-scale motions initiate an MJO event by moistening the lower troposphere by horizontal advection. Increasingly strong convection transports moisture into the upper troposphere, suggesting a reinforcement of the convection itself. The change of convection organization shown by the cloud regimes indicates a strong interaction between the large-scale circulation and deep convection. The analysis is extended to the complete atmospheric diabatic heating by precipitation, radiation, and surface fluxes. The wave organizes stronger convective heating of the tropical atmosphere, which results in stronger winds, while there is only a passive response of the surface, directly linked to cloud radiative effects. Overall, the results suggest that an MJO event is an amplification of large-scale wave motions by stronger convective heating, which results from a dynamic reorganization of scattered deep convection into more intense mesoscale systems.

Corresponding author address: Dr. Eric Tromeur, NOAA/CREST Center, Remote Sensing of Climate Group, The City College of New York, Steinman Hall (T-107), New York, NY 10031. Email: etromeur@ccny.cuny.edu

Abstract

To better understand the interaction between tropical deep convection and the Madden–Julian oscillation (MJO), tropical cloud regimes are defined by cluster analysis of International Satellite Cloud Climatology Project (ISCCP) cloud-top pressure—optical thickness joint distributions from the D1 dataset covering 21.5 yr. An MJO index based solely on upper-level wind anomalies is used to study variations of the tropical cloud regimes. The MJO index shows that MJO events are present almost all the time; instead of the MJO event being associated with “on or off” deep convection, it is associated with weaker or stronger mesoscale organization of deep convection. Atmospheric winds and humidity from NCEP–NCAR reanalysis 1 are used to characterize the large-scale dynamics of the MJO; the results show that the large-scale motions initiate an MJO event by moistening the lower troposphere by horizontal advection. Increasingly strong convection transports moisture into the upper troposphere, suggesting a reinforcement of the convection itself. The change of convection organization shown by the cloud regimes indicates a strong interaction between the large-scale circulation and deep convection. The analysis is extended to the complete atmospheric diabatic heating by precipitation, radiation, and surface fluxes. The wave organizes stronger convective heating of the tropical atmosphere, which results in stronger winds, while there is only a passive response of the surface, directly linked to cloud radiative effects. Overall, the results suggest that an MJO event is an amplification of large-scale wave motions by stronger convective heating, which results from a dynamic reorganization of scattered deep convection into more intense mesoscale systems.

Corresponding author address: Dr. Eric Tromeur, NOAA/CREST Center, Remote Sensing of Climate Group, The City College of New York, Steinman Hall (T-107), New York, NY 10031. Email: etromeur@ccny.cuny.edu

Save