• Chong, M., and D. Hauser, 1990: A tropical squall line observed during the COPT 81 experiment in West Africa. Part III: Heat and moisture budgets. Mon. Wea. Rev., 118 , 16961706.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and R. H. Johnson, 2006: Contrasting characteristics of convection over the Northern and Southern South China Sea during SCSMEX. Mon. Wea. Rev., 134 , 10411062.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, P. T. Haertel, and J. Wang, 2003: Corrected TOGA COARE sounding humidity data: Impact on diagnosed properties of convection and climate over the warm pool. J. Climate, 16 , 23702384.

    • Search Google Scholar
    • Export Citation
  • Das, S., D. Johnson, and W-K. Tao, 1999: Single-column and cloud ensemble model simulations of TOGA COARE convective systems. J. Meteor. Soc. Japan, 77 , 803826.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., and R. A. Houze Jr., 1983: Water budget of a mesoscale convective system in the tropics. J. Atmos. Sci., 40 , 18351850.

    • Search Google Scholar
    • Export Citation
  • Greco, S., J. Scala, J. Halverson, H. L. Massie, W-K. Tao, and M. Garstang, 1994: Amazon coastal squall lines. Part II: Heat and moisture transports. Mon. Wea. Rev., 122 , 623635.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., and W. S. Olson, 2006: Bayesian estimation of precipitation from satellite passive microwave observations using combined radar–radiometer retrievals. J. Appl. Meteor. Climatol., 45 , 416433.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, C-L. Shie, T. L’Ecuyer, and W-K. Tao, 2009: Combining satellite microwave radiometer and radar observations to estimate atmospheric latent heating profiles. J. Climate, 22 , 63566376.

    • Search Google Scholar
    • Export Citation
  • Halverson, J. B., T. Rickenbach, B. Roy, H. Pierce, and E. Williams, 2002: Environmental characteristics of convective systems during TRMM-LBA. Mon. Wea. Rev., 130 , 14931509.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105 , 15401567.

  • Houze Jr., R. A., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60 , 396410.

  • Houze Jr., R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox. Bull. Amer. Meteor. Soc., 78 , 21792196.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. E., W-K. Tao, J. Simpson, and C-H. Sui, 2002: A study of the response of deep tropical clouds to large-scale thermodynamic forcing. Part I: Modeling strategies and simulations of TOGA COARE convective systems. J. Atmos. Sci., 59 , 34923518.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implications for cumulus parameterization. Mon. Wea. Rev., 112 , 15901601.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. J. Hamilton, 1988: The relationship of surface pressure features to the precipitation and airflow structure of an intense midlatitude squall line. Mon. Wea. Rev., 116 , 14441473.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2002: Characteristics of the 1998 summer monsoon onset over the northern South China Sea. J. Meteor. Soc. Japan, 80 , 561578.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., S. L. Aves, and P. E. Ciesielski, 2005: Organization of oceanic convection during the onset of the 1998 East Asian summer monsoon. Mon. Wea. Rev., 133 , 131148.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W-K. Tao, J. Simpson, and B. Ferrier, 2003: Modeling of convective-stratiform precipitation processes: Sensitivity to partitioning methods. J. Appl. Meteor., 42 , 505527.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W-K. Tao, R. Cifelli, W. Olson, J. Halverson, S. Rutledge, and J. Simpson, 2007: Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. J. Atmos. Sci., 64 , 11411164.

    • Search Google Scholar
    • Export Citation
  • Li, X., C-H. Sui, K-M. Lau, and M-D. Chou, 1999: Large-scale forcing and cloud-radiation interaction in the tropical deep convective regime. J. Atmos. Sci., 56 , 30283042.

    • Search Google Scholar
    • Export Citation
  • Li, X., C-H. Sui, and K-M. Lau, 2002: Dominant cloud microphysical processes in a tropical oceanic convective system: A 2D cloud resolving modeling study. Mon. Wea. Rev., 130 , 24812491.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and R. H. Johnson, 1996: Heating, moistening, and rainfall over the western Pacific during TOGA COARE. J. Atmos. Sci., 53 , 33673383.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., C. D. Kummerow, Y. Hong, and W-K. Tao, 1999: Atmospheric latent heating distributions in the tropics derived from passive microwave radiometer measurements. J. Appl. Meteor., 38 , 633664.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry Part I: Method and uncertainties. J. Appl. Meteor. Climatol., 45 , 702720.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and R. A. Houze Jr., 1987: A diagnostic modeling study of the trailing stratiform of a midlatitude squall line. J. Atmos. Sci., 44 , 26402656.

    • Search Google Scholar
    • Export Citation
  • Satoh, S., and A. Noda, 2001: Retrieval of latent heating profiles from TRMM radar data. Proc. 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., 6.3. [Available online at http://ams.confex.com/ams/30radar/techprogram/paper_21763.htm].

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16 , 17391756.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W-K. Tao, and D. E. Johnson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43 , 10951113.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W-K. Tao, and C-L. Shie, 2007: Spectral retrieval of latent heating profiles from TRMM PR data. Part II: Algorithm improvement and heating estimates over tropical ocean regions. J. Appl. Meteor., 46 , 10981124.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, and W-K. Tao, 2008: Spectral retrieval of latent heating profiles from TRMM PR data. Part III: Estimating apparent moisture sink profiles over tropical oceans. J. Appl. Meteor. Climatol., 47 , 620640.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, S. Kida, W-K. Tao, X. Zeng, C. Yokoyama, and T. L’Ecuyer, 2009: Spectral retrieval of latent heating profiles from TRMM PR data. Part IV: Comparisons of lookup tables from two- and three-dimensional simulations. J. Climate, 22 , 55775594.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., and W-K. Tao, 1993: The Goddard Cumulus Ensemble Model. Part II: Applications for studying cloud precipitating processes and for NASA TRMM. Terr. Atmos. Ocean. Sci., 4 , 73116.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., X. Xiang, A. Mugnai, and G. J. Tripoli, 1994: Design of an inversion-based precipitation profile retrieval algorithm using an explicit cloud model for initial guess microphysics. Meteor. Atmos. Phys., 54 , 5378.

    • Search Google Scholar
    • Export Citation
  • Soong, S-T., and Y. Ogura, 1980: Response of trade wind cumuli to large-scale processes. J. Atmos. Sci., 37 , 20352050.

  • Soong, S-T., and W-K. Tao, 1980: Response of deep tropical cumulus clouds to mesoscale processes. J. Atmos. Sci., 37 , 20162034.

  • Starr, D. O’C., and S. K. Cox, 1985: Cirrus clouds. Part I: A cirrus cloud model. J. Atmos. Sci., 42 , 26632681.

  • Sui, C-H., and M. Yanai, 1986: Cumulus ensemble effects on the large-scale vorticity and momentum fields of GATE. Part I: Observational evidence. J. Atmos. Sci., 43 , 16181642.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., 2003: Goddard Cumulus Ensemble (GCE) model: Application for understanding precipitation processes. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM): A Tribute to Dr. Joanne Simpson, Meteor. Monogr., No. 51, Amer. Meteor. Soc., 107–138.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and S-T. Soong, 1986: A study of the response of deep tropical clouds to mesoscale processes: Three-dimensional numerical experiments. J. Atmos. Sci., 43 , 26532676.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and J. Simpson, 1993: The Goddard Cumulus Ensemble model. Part I: Model description. Terr. Atmos. Ocean. Sci., 4 , 1954.

  • Tao, W-K., J. Simpson, and S-T. Soong, 1987: Statistical properties of a cloud ensemble: A numerical study. J. Atmos. Sci., 44 , 31753187.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., J. Simpson, S. Lang, M. McCumber, R. Adler, and R. Penc, 1990: An algorithm to estimate the heating budget from vertical hydrometeor profiles. J. Appl. Meteor., 29 , 12321244.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., J. Simpson, and S-T. Soong, 1991: Numerical simulation of a subtropical squall line over Taiwan Strait. Mon. Wea. Rev., 119 , 26992723.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, and R. Adler, 1993a: Retrieval algorithms for estimating the vertical profiles of latent heat release: Their applications for TRMM. J. Meteor. Soc. Japan, 71 , 685700.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., J. Simpson, C-H. Sui, B. Ferrier, S. Lang, J. Scala, M-D. Chou, and K. Pickering, 1993b: Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation. J. Atmos. Sci., 50 , 673690.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, C-H. Sui, B. Ferrier, and M-D. Chou, 1996: Mechanisms of cloud–radiation interaction in the tropics and midlatitudes. J. Atmos. Sci., 53 , 26242651.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, W. S. Olson, D. Johnson, B. Ferrier, C. Kummerow, and R. Adler, 2000: Vertical profiles of latent heat release and their retrieval for TOGA COARE convective systems using a cloud resolving model, SSM/I, and ship-borne radar data. J. Meteor. Soc. Japan, 78 , 333355.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and Coauthors, 2001: Retrieved vertical profiles of latent heating release using TRMM rainfall products for February 1998. J. Appl. Meteor., 40 , 957982.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and Coauthors, 2003a: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GEC) model. Meteor. Atmos. Phys., 82 , 97137.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., C-L. Shie, J. Simpson, S. Braun, R. Johnson, and P. E. Ciesielski, 2003b: Convective systems over the South China Sea: Cloud-resolving model simulations. J. Atmos. Sci., 60 , 29292956.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., D. Johnson, C-L. Shie, and J. Simpson, 2004: The atmospheric energy budget and large-scale precipitation efficiency of convective systems during TOGA COARE, GATE, SCSMEX and ARM: Cloud-resolving model simulations. J. Atmos. Sci., 61 , 24052423.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and Coauthors, 2006: Retrieval of latent heating from TRMM measurements. Bull. Amer. Meteor. Soc., 87 , 15551572.

  • Tao, W-K., R. Houze Jr., and E. Smith, 2007: The fourth TRMM latent heating workshop. Bull. Amer. Meteor. Soc., 88 , 12551259.

  • Thompson Jr., R. M., S. W. Payne, E. E. Recker, and R. J. Reed, 1979: Structure and properties of synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos. Sci., 36 , 5372.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., W-K. Tao, and J. Simpson, 1996: The impact of ocean surface fluxes on a TOGA COARE convective system. Mon. Wea. Rev., 124 , 27532763.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and Coauthors, 2002: Intercomparison of cloud-resolving models with the Atmospheric Radiation Measurement summer 1997 intensive observation period data. Quart. J. Roy. Meteor. Soc., 128 , 593624.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. Chu, 1973: Determination of average bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 1999: Four-dimensional structure of monthly latent heating derived from SSM/I satellite measurements. J. Climate, 12 , 10161037.

    • Search Google Scholar
    • Export Citation
  • Yang, S., W. S. Olson, J-J. Wang, T. L. Bell, E. A. Smith, and C. D. Kummerow, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part II: Evaluation of estimates using independent data. J. Appl. Meteor., 45 , 721739.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., and Coauthors, 2007: Evaluating clouds in long-term cloud-resolving model simulations with observational data. J. Atmos. Sci., 64 , 41534177.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., W-K. Tao, S. Lang, A. Hou, M. Zhang, and J. Simpson, 2008: On the sensitivity of atmospheric ensembles to cloud microphysics in long-term cloud-resolving model simulations. J. Meteor. Soc. Japan, 86A , 4565.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., and Coauthors, 2009: A contribution by ice nuclei to global warming. Quart. J. Roy. Meteor. Soc., 135 , 16141629.

  • Zhang, M. H., and J. L. Lin, 1997: Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements. J. Atmos. Sci., 54 , 15031524.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., J. L. Lin, R. T. Cederwall, J. J. Yio, and S. C. Xie, 2001: Objective analysis of ARM IOP Data: Method and sensitivity. Mon. Wea. Rev., 129 , 295311.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., R. J. Meitin, and M. A. LeMone, 1981: Mesoscale motion fields associated with a slowly moving GATE convective band. J. Atmos. Sci., 38 , 17251750.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 29 29 29
PDF Downloads 15 15 15

Relating Convective and Stratiform Rain to Latent Heating

View More View Less
  • 1 Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, and Science Systems and Applications, Inc., Lanham, Maryland
  • | 3 Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, and Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland
  • | 4 Graduate School of Science, Kyoto University, Kyoto, Japan
  • | 5 Center for Climate System Research, University of Tokyo, Tokyo, Japan
Restricted access

Abstract

The relationship among surface rainfall, its intensity, and its associated stratiform amount is established by examining observed precipitation data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The results show that for moderate–high stratiform fractions, rain probabilities are strongly skewed toward light rain intensities. For convective-type rain, the peak probability of occurrence shifts to higher intensities but is still significantly skewed toward weaker rain rates. The main differences between the distributions for oceanic and continental rain are for heavily convective rain. The peak occurrence, as well as the tail of the distribution containing the extreme events, is shifted to higher intensities for continental rain. For rainy areas sampled at 0.5° horizontal resolution, the occurrence of conditional rain rates over 100 mm day−1 is significantly higher over land. Distributions of rain intensity versus stratiform fraction for simulated precipitation data obtained from cloud-resolving model (CRM) simulations are quite similar to those from the satellite, providing a basis for mapping simulated cloud quantities to the satellite observations.

An improved convective–stratiform heating (CSH) algorithm is developed based on two sources of information: gridded rainfall quantities (i.e., the conditional intensity and the stratiform fraction) observed from the TRMM PR and synthetic cloud process data (i.e., latent heating, eddy heat flux convergence, and radiative heating/cooling) obtained from CRM simulations of convective cloud systems. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. Major differences between the new and old algorithms include a significant increase in the amount of low- and midlevel heating, a downward emphasis in the level of maximum cloud heating by about 1 km, and a larger variance between land and ocean in the new CSH algorithm.

Corresponding author address: Dr. W.-K. Tao, Laboratory for Atmospheres, NASA GSFC, Greenbelt, MD 20771. Email: wei-kuo.tao-1@nasa.gov

This article included in the TRMM Diabatic Heating special collection.

Abstract

The relationship among surface rainfall, its intensity, and its associated stratiform amount is established by examining observed precipitation data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The results show that for moderate–high stratiform fractions, rain probabilities are strongly skewed toward light rain intensities. For convective-type rain, the peak probability of occurrence shifts to higher intensities but is still significantly skewed toward weaker rain rates. The main differences between the distributions for oceanic and continental rain are for heavily convective rain. The peak occurrence, as well as the tail of the distribution containing the extreme events, is shifted to higher intensities for continental rain. For rainy areas sampled at 0.5° horizontal resolution, the occurrence of conditional rain rates over 100 mm day−1 is significantly higher over land. Distributions of rain intensity versus stratiform fraction for simulated precipitation data obtained from cloud-resolving model (CRM) simulations are quite similar to those from the satellite, providing a basis for mapping simulated cloud quantities to the satellite observations.

An improved convective–stratiform heating (CSH) algorithm is developed based on two sources of information: gridded rainfall quantities (i.e., the conditional intensity and the stratiform fraction) observed from the TRMM PR and synthetic cloud process data (i.e., latent heating, eddy heat flux convergence, and radiative heating/cooling) obtained from CRM simulations of convective cloud systems. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. Major differences between the new and old algorithms include a significant increase in the amount of low- and midlevel heating, a downward emphasis in the level of maximum cloud heating by about 1 km, and a larger variance between land and ocean in the new CSH algorithm.

Corresponding author address: Dr. W.-K. Tao, Laboratory for Atmospheres, NASA GSFC, Greenbelt, MD 20771. Email: wei-kuo.tao-1@nasa.gov

This article included in the TRMM Diabatic Heating special collection.

Save