Removing ENSO-Related Variations from the Climate Record

Gilbert P. Compo CIRES Climate Diagnostics Center, University of Colorado, and NOAA/Earth System Research Laboratory, Physical Sciences Division, Boulder, Colorado

Search for other papers by Gilbert P. Compo in
Current site
Google Scholar
PubMed
Close
and
Prashant D. Sardeshmukh CIRES Climate Diagnostics Center, University of Colorado, and NOAA/Earth System Research Laboratory, Physical Sciences Division, Boulder, Colorado

Search for other papers by Prashant D. Sardeshmukh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An important question in assessing twentieth-century climate change is to what extent have ENSO-related variations contributed to the observed trends. Isolating such contributions is challenging for several reasons, including ambiguities arising from how ENSO itself is defined. In particular, defining ENSO in terms of a single index and ENSO-related variations in terms of regressions on that index, as done in many previous studies, can lead to wrong conclusions. This paper argues that ENSO is best viewed not as a number but as an evolving dynamical process for this purpose. Specifically, ENSO is identified with the four dynamical eigenvectors of tropical SST evolution that are most important in the observed evolution of ENSO events. This definition is used to isolate the ENSO-related component of global SST variations on a month-by-month basis in the 136-yr (1871–2006) Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST). The analysis shows that previously identified multidecadal variations in the Pacific, Indian, and Atlantic Oceans all have substantial ENSO components. The long-term warming trends over these oceans are also found to have appreciable ENSO components, in some instances up to 40% of the total trend. The ENSO-unrelated component of 5-yr average SST variations, obtained by removing the ENSO-related component, is interpreted as a combination of anthropogenic, naturally forced, and internally generated coherent multidecadal variations. The following two surprising aspects of these ENSO-unrelated variations are emphasized: 1) a strong cooling trend in the eastern equatorial Pacific Ocean and 2) a nearly zonally symmetric multidecadal tropical–extratropical seesaw that has amplified in recent decades. The latter has played a major role in modulating SSTs over the Indian Ocean.

Corresponding author address: Gilbert P. Compo, CIRES Climate Diagnostics Center and NOAA/ESRL/Physical Sciences Division, 325 Broadway R/PSD1, Boulder, CO 80305-3328. Email: compo@colorado.edu

Abstract

An important question in assessing twentieth-century climate change is to what extent have ENSO-related variations contributed to the observed trends. Isolating such contributions is challenging for several reasons, including ambiguities arising from how ENSO itself is defined. In particular, defining ENSO in terms of a single index and ENSO-related variations in terms of regressions on that index, as done in many previous studies, can lead to wrong conclusions. This paper argues that ENSO is best viewed not as a number but as an evolving dynamical process for this purpose. Specifically, ENSO is identified with the four dynamical eigenvectors of tropical SST evolution that are most important in the observed evolution of ENSO events. This definition is used to isolate the ENSO-related component of global SST variations on a month-by-month basis in the 136-yr (1871–2006) Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST). The analysis shows that previously identified multidecadal variations in the Pacific, Indian, and Atlantic Oceans all have substantial ENSO components. The long-term warming trends over these oceans are also found to have appreciable ENSO components, in some instances up to 40% of the total trend. The ENSO-unrelated component of 5-yr average SST variations, obtained by removing the ENSO-related component, is interpreted as a combination of anthropogenic, naturally forced, and internally generated coherent multidecadal variations. The following two surprising aspects of these ENSO-unrelated variations are emphasized: 1) a strong cooling trend in the eastern equatorial Pacific Ocean and 2) a nearly zonally symmetric multidecadal tropical–extratropical seesaw that has amplified in recent decades. The latter has played a major role in modulating SSTs over the Indian Ocean.

Corresponding author address: Gilbert P. Compo, CIRES Climate Diagnostics Center and NOAA/ESRL/Physical Sciences Division, 325 Broadway R/PSD1, Boulder, CO 80305-3328. Email: compo@colorado.edu

Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., L. Matrosova, C. Penland, J. D. Scott, and P. Chang, 2008: Forecasting Pacific SSTs: Linear inverse model predictions of the PDO. J. Climate, 21 , 385402.

    • Search Google Scholar
    • Export Citation
  • Angell, J. K., 2000: Tropospheric temperature variations adjusted for El Niño, 1958–1998. J. Geophys. Res., 105 , (D9). 1184111849.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., and C. K. Folland, 2007: Evidence for a rapid global climate shift across the late 1960s. J. Climate, 20 , 27212744.

  • Barsugli, J. J., S-K. Shin, and P. D. Sardeshmukh, 2006: Sensitivity of global warming to the pattern of tropical ocean warming. Climate Dyn., 27 , 483492. doi:10.1007/s00382-006-0143-7.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Borges, M. A., and P. D. Sardeshmukh, 1995: Barotropic Rossby wave dynamics of zonally varying upper-level flows during northern winter. J. Atmos. Sci., 52 , 37793796.

    • Search Google Scholar
    • Export Citation
  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111 , D12106. doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275 , 957960.

    • Search Google Scholar
    • Export Citation
  • Chen, D., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428 , 733736.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17 , 41434158.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9 , 21902196.

  • Collins, M., 2000: Understanding uncertainties in the response of ENSO to greenhouse warming. Geophys. Res. Lett., 27 , 35093512.

  • Covey, D. L., and S. Hastenrath, 1978: The Pacific El Niño phenomenon and the Atlantic circulation. Mon. Wea. Rev., 106 , 12801287.

  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16 , 661676.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and A. M. Mestas-Nuñez, 1999: Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns. J. Climate, 12 , 27192733.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28 , 20772080.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., D. E. Parker, A. W. Coleman, and R. Washington, 1999: Large scale modes of ocean surface temperature since the late nineteenth century. Beyond El Niño: Decadal and Interdecadal Climate Variability, A. Navarra, Ed., Springer-Verlag, 73–102.

    • Search Google Scholar
    • Export Citation
  • Fu, C., H. F. Diaz, and J. O. Fletcher, 1986: Characteristics of the response of sea surface temperature in the central Pacific associated with warm episodes of the Southern Oscillation. Mon. Wea. Rev., 114 , 17161738.

    • Search Google Scholar
    • Export Citation
  • Garcia, A., and C. Penland, 1991: Fluctuating hydrodynamics and principal oscillation pattern analysis. J. Stat. Phys., 64 , 11211132.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293 , 474479.

    • Search Google Scholar
    • Export Citation
  • Guan, B., and S. Nigam, 2008: Pacific sea surface temperatures in the twentieth century: An evolution-centric analysis of variability and trend. J. Climate, 21 , 27902809.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, 2006: Global temperature change. Proc. Natl. Acad. Sci. USA, 103 , 1428814293.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and N. K. Larkin, 1998: El Niño-Southern Oscillation sea surface temperature and wind anomalies, 1946-1993. Rev. Geophys., 36 , 353399.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–746.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., M. P. Hoerling, A. S. Phillips, and T. Xu, 2004: Twentieth century North Atlantic climate change. Part I: Assessing determinism. Climate Dyn., 23 , 371389. doi:10.1007/s00382-004-0432-y.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the KOBE collection. Int. J. Climatol., 25 , 865879.

    • Search Google Scholar
    • Export Citation
  • Joseph, R., and S. Nigam, 2006: ENSO evolution and teleconnections in IPCC’s twentieth-century climate simulations: Realistic representation? J. Climate, 19 , 43604377.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103 , (C9). 1856718589.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., R. Seager, A. Kaplan, Y. Kushnir, and M. A. Cane, 2009: Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J. Climate, 22 , 43164321.

    • Search Google Scholar
    • Export Citation
  • Kelly, P. M., and P. D. Jones, 1996: Removal of the El Niño–Southern Oscillation signal from the gridded surface air temperature data set. J. Geophys. Res., 101 , (D14). 1901319022.

    • Search Google Scholar
    • Export Citation
  • Kestin, T. S., D. J. Karoly, J. I. Yano, and N. A. Rayner, 1998: Time–frequency variability of ENSO and stochastic simulations. J. Climate, 11 , 22582272.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., J. P. McCreary, and B. A. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophys. Res. Lett., 26 , 17431746.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32 , L20708. doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2006: Assessment of twentieth-century regional surface temperature trends using the GFDL CM2 coupled models. J. Climate, 19 , 16241651.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 2003: The nature and causes for the delayed atmospheric response to El Niño. J. Climate, 16 , 13911403.

    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., 1996: Lag relationships involving tropical sea surface temperatures. J. Climate, 9 , 25682578.

  • Lau, K-M., and H. Weng, 1999: Interannual, decadal–interdecadal, and global warming signals in sea surface temperature during 1955–97. J. Climate, 12 , 12571267.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and T. M. Smith, 1999: Covariability of aspects of North American climate with global sea surface temperatures on interannual to interdecadal timescales. J. Climate, 12 , 289302.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and M. A. Palecki, 2006: Multidecadal climate variability of global lands and oceans. Int. J. Climatol., 26 , 849865.

  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999: The nonnormal nature of El Niño and intraseasonal variability. J. Climate, 12 , 29652982.

  • Moron, V., R. Vautard, and M. Ghil, 1998: Trends, interdecadal and interannual oscillations in global sea-surface temperature. Climate Dyn., 14 , 545569.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , (C7). 1426114290.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and P. D. Sardeshmukh, 1998: The impact of the annual cycle on the North Pacific/North American response to remote low-frequency forcing. J. Atmos. Sci., 55 , 13361353.

    • Search Google Scholar
    • Export Citation
  • Newman, M., G. P. Compo, and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16 , 38533857.

    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, and C. Penland, 2009: How important is air–sea coupling in ENSO and MJO evolution? J. Climate, 22 , 29582977.

    • Search Google Scholar
    • Export Citation
  • Parker, D., C. Folland, A. Scaife, J. Knight, A. Colman, P. Baines, and B. Dong, 2007: Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112 , D18115. doi:10.1029/2007JD008411.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and T. Magorian, 1993: Prediction of Niño 3 sea surface temperatures using linear inverse modeling. J. Climate, 6 , 10671076.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8 , 19992024.

  • Penland, C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J. Climate, 11 , 483496.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 2006: Studies of El Niño and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J. Climate, 19 , 57965815.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperatures since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Robock, A., and J. Mao, 1995: The volcanic signal in surface temperature observations. J. Climate, 8 , 10861103.

  • Schneider, N., and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18 , 43554373.

  • Seager, R., and R. Murtugudde, 1997: Ocean dynamics, thermocline adjustment, and regulation of tropical SST. J. Climate, 10 , 521534.

  • Shin, S-I., and Z. Liu, 2000: Response of the equatorial thermocline to extratropical buoyancy forcing. J. Phys. Oceanogr., 30 , 28832905.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical Merged Land–Ocean Surface Temperature Analysis (1880–2006). J. Climate, 21 , 22832296.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., S-I. Shin, M. A. Alexander, and J. P. McCreary, 2008: The relative importance of tropical variability forced from the North Pacific through ocean pathways. Climate Dyn., 31 , 315331. doi:10.1007/s00382-007-0353-7.

    • Search Google Scholar
    • Export Citation
  • Sun, D-Z., 2003: A possible effect of an increase in the warm pool SST on the magnitude of El Niño warming. J. Climate, 16 , 185205.

  • Sun, D-Z., T. Zhang, and S-I. Shin, 2004: The effect of subtropical cooling on the amplitude of ENSO: A numerical study. J. Climate, 17 , 37863798.

    • Search Google Scholar
    • Export Citation
  • Sweeney, C., A. Gnanadesikan, S. M. Griffies, M. J. Harrison, A. J. Rosati, and B. L. Samuels, 2005: Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J. Phys. Oceanogr., 35 , 11031119.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., and D. S. Battisti, 2000: A linear stochastic dynamical model of ENSO. Part I: Model development. J. Climate, 13 , 28182832.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. J. Kennedy, J. M. Wallace, and P. D. Jones, 2008: A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature, 453 , 646649.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, P. D. Jones, and J. J. Kennedy, 2009: Identifying signatures of natural climate variability in time series of global-mean surface temperature: Methodology and insights. J. Climate, 22 , 61206141.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79 , 6178.

  • Torrence, C., and P. J. Webster, 1999: Interdecadal changes in the ENSO–monsoon system. J. Climate, 12 , 26792690.

  • Trenberth, K. E., and L. Smith, 2006: The vertical structure of temperature in the tropics: Different flavors of El Niño. J. Climate, 19 , 49564973.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20 , 43164340.

  • Vimont, D. J., 2005: The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J. Climate, 18 , 20802092.

    • Search Google Scholar
    • Export Citation
  • Vyushin, D., and P. J. Kushner, 2009: Power-law and long-memory characteristics of the atmospheric general circulation. J. Climate, 22 , 28902904.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103 , (C7). 1424114269.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Y. Wang, 1996: Temporal structure of the Southern Oscillation as revealed by waveform and wavelet analysis. J. Climate, 9 , 15861598.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132 , 19171932.

    • Search Google Scholar
    • Export Citation
  • Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lott, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25 , 823842.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., and M. J. McPhaden, 2006: Decadal variability of the shallow Pacific meridional overturning circulation: Relation to tropical sea surface temperatures in observations and climate change models. Ocean Modell., 15 , 250273.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1827 810 111
PDF Downloads 1287 411 41