Coherence between the Great Salt Lake Level and the Pacific Quasi-Decadal Oscillation

Shih-Yu Wang Utah Climate Center, Utah State University, Logan, Utah

Search for other papers by Shih-Yu Wang in
Current site
Google Scholar
PubMed
Close
,
Robert R. Gillies Utah Climate Center, and Department of Plants, Soils, and Climate, Utah State University, Logan, Utah

Search for other papers by Robert R. Gillies in
Current site
Google Scholar
PubMed
Close
,
Jiming Jin Department of Plants, Soils, and Climate, and Department of Watershed Sciences, Utah State University, Logan, Utah

Search for other papers by Jiming Jin in
Current site
Google Scholar
PubMed
Close
, and
Lawrence E. Hipps Department of Plants, Soils, and Climate, Utah State University, Logan, Utah

Search for other papers by Lawrence E. Hipps in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The lake level elevation of the Great Salt Lake (GSL), a large closed basin lake in the arid western United States, is characterized by a pronounced quasi-decadal oscillation (QDO). The variation of the GSL elevation is very coherent with the QDO of sea surface temperature anomalies in the tropical central Pacific (also known as the Pacific QDO). However, such coherence denies any direct association between the precipitation in the GSL watershed and the Pacific QDO because, in a given frequency, the precipitation variation always leads the GSL elevation variation. Therefore, the precipitation variation is phase shifted from the Pacific QDO. This study investigates the physical mechanism forming the coherence between the GSL elevation and the Pacific QDO. Pronounced and coherent quasi-decadal signals in precipitation, streamflow, water vapor flux, and drought conditions are found throughout the Great Basin. Recurrent atmospheric circulation patterns develop over the Gulf of Alaska during the warm-to-cool and cool-to-warm transition phases of the Pacific QDO. These circulation patterns modulate the water vapor flux associated with synoptic transient activities over the western United States and, in turn, lead to the QDO in the hydrological cycle of the Great Basin. As the GSL integrates the hydrological responses in the Great Basin, the hydrological QDO is then transferred to the GSL elevation. Because the GSL elevation consistently lags the precipitation by a quarter-phase (about 3 yr in the quasi-decadal time scale), these processes take an average of 6 yr for the GSL elevation to eventually respond to the Pacific QDO. This creates a half-phase delay of the GSL elevation from the Pacific QDO, thereby forming the inverse, yet coherent, relationship between them. Tree-ring reconstructed precipitation records confirm that the quasi-decadal signal in precipitation is a prominent feature in this region.

Corresponding author address: Shih-Yu (Simon) Wang, Utah Climate Center, Utah State University, 4825 Old Main Hill, Logan, UT 84322-4825. Email: simon.wang@usu.edu

Abstract

The lake level elevation of the Great Salt Lake (GSL), a large closed basin lake in the arid western United States, is characterized by a pronounced quasi-decadal oscillation (QDO). The variation of the GSL elevation is very coherent with the QDO of sea surface temperature anomalies in the tropical central Pacific (also known as the Pacific QDO). However, such coherence denies any direct association between the precipitation in the GSL watershed and the Pacific QDO because, in a given frequency, the precipitation variation always leads the GSL elevation variation. Therefore, the precipitation variation is phase shifted from the Pacific QDO. This study investigates the physical mechanism forming the coherence between the GSL elevation and the Pacific QDO. Pronounced and coherent quasi-decadal signals in precipitation, streamflow, water vapor flux, and drought conditions are found throughout the Great Basin. Recurrent atmospheric circulation patterns develop over the Gulf of Alaska during the warm-to-cool and cool-to-warm transition phases of the Pacific QDO. These circulation patterns modulate the water vapor flux associated with synoptic transient activities over the western United States and, in turn, lead to the QDO in the hydrological cycle of the Great Basin. As the GSL integrates the hydrological responses in the Great Basin, the hydrological QDO is then transferred to the GSL elevation. Because the GSL elevation consistently lags the precipitation by a quarter-phase (about 3 yr in the quasi-decadal time scale), these processes take an average of 6 yr for the GSL elevation to eventually respond to the Pacific QDO. This creates a half-phase delay of the GSL elevation from the Pacific QDO, thereby forming the inverse, yet coherent, relationship between them. Tree-ring reconstructed precipitation records confirm that the quasi-decadal signal in precipitation is a prominent feature in this region.

Corresponding author address: Shih-Yu (Simon) Wang, Utah Climate Center, Utah State University, 4825 Old Main Hill, Logan, UT 84322-4825. Email: simon.wang@usu.edu

Save
  • Abarbanel, H. D. I., and U. Lall, 1996: Nonlinear dynamics of the Great Salt Lake: System identification and prediction. Climate Dyn., 12 , 287297.

    • Search Google Scholar
    • Export Citation
  • Allan, R. J., 2000: ENSO and climatic variability in the last 150 years. El Niño and the Southern Oscillation: Multiscale Variability, Global and Regional Impacts, H. F. Diaz and V. Markgraf, Eds., Cambridge University Press, 3–56.

    • Search Google Scholar
    • Export Citation
  • Allan, R. J., and T. J. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure data set (HadSLP2): 1850–2004. J. Climate, 19 , 58165842.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. H. Berbery, 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and streamflow. J. Climate, 14 , 21052128.

    • Search Google Scholar
    • Export Citation
  • Biondi, F., A. Gershunov, and D. R. Cayan, 2001: North Pacific decadal climate variability since 1661. J. Climate, 14 , 510.

  • Blackmon, M. L., 1976: A climatological spectral study of the 500-mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33 , 16071623.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., and J. O. Roads, 1984: Local relationships between U.S. west coast precipitation and monthly mean circulation parameters. Mon. Wea. Rev., 112 , 12761282.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and hydrologic extremes in the western United States. J. Climate, 12 , 28812893.

    • Search Google Scholar
    • Export Citation
  • Chen, T-C., 1985: Global water vapor flux and maintenance during FGGE. Mon. Wea. Rev., 113 , 18011819.

  • Cook, E. R., D. M. Meko, D. W. Stahle, and M. K. Cleaveland, 1999: Drought reconstructions for the continental United States. J. Climate, 12 , 11451162.

    • Search Google Scholar
    • Export Citation
  • Dai, A., K. E. Trenberth, and T. Qian, 2004: A global data set of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5 , 11171130.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., D. R. Cayan, H. F. Diaz, and D. M. Meko, 1998: North–south precipitation patterns in western North America on interannual-to-decadal timescales. J. Climate, 11 , 30953111.

    • Search Google Scholar
    • Export Citation
  • Ely, L. L., Y. Enzel, and D. R. Cayan, 1994: Anomalous North Pacific atmospheric circulation and large winter floods in the southwestern United States. J. Climate, 7 , 977987.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and T. P. Barnett, 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79 , 27152725.

  • Gray, S. T., S. T. Jackson, and J. L. Betancourt, 2004: Tree-ring based reconstructions of interannual to decadal-scale precipitation variability for northeastern Utah. J. Amer. Water Resour. Assoc., 40 , 947960.

    • Search Google Scholar
    • Export Citation
  • Hamming, R. W., 1998: Digital Filters. 3rd ed. Dover Publications, 296 pp.

  • Harnack, R. P., D. T. Jensen, and J. R. Cermak, 1998: Investigation of upper-air conditions occurring with heavy summer rain in Utah. Int. J. Climatol., 18 , 701723.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models I: Theory. Tellus, 28 , 473485.

  • Hassibe, W. R., 1991: The Great Salt Lake. U.S. Department of the Interior/U.S. Geological Survey, U.S. Government Printing Office, 24 pp.

    • Search Google Scholar
    • Export Citation
  • Hidalgo, H. G., and J. A. Dracup, 2003: ENSO and PDO effects on hydroclimatic variations of the Upper Colorado River basin. J. Hydrometeor., 4 , 523.

    • Search Google Scholar
    • Export Citation
  • Iacobucci, A., and A. Noullez, 2005: A frequency selective filter for short-length time series. Comput. Econ., 25 , 75102.

  • Jin, J., N. L. Milller, S. Sorooshian, and X. Gao, 2006: Relationship between atmospheric circulation and snowpack in the western United States. Hydrol. Processes, 20 .doi:10.1002/hyp.6126.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856-1991. J. Geophys. Res., 103 , 567589.

    • Search Google Scholar
    • Export Citation
  • Karoly, D., R. A. Plumb, and M. Ting, 1989: Examples of the horizontal propagation of quasi-stationary waves. J. Atmos. Sci., 46 , 28022811.

    • Search Google Scholar
    • Export Citation
  • Keppenne, C. L., and M. Ghil, 1992: Adaptive filtering and prediction of the Southern Oscillation Index. J. Geophys. Res., 97 , 2044920454.

    • Search Google Scholar
    • Export Citation
  • King, B., and Coauthors, 2007: Drought in Utah: Learning from the past-preparing for the future. Utah State Water Plan, Utah Division of Water Resources, 124 pp.

    • Search Google Scholar
    • Export Citation
  • Lall, U., and M. Mann, 1995: The Great Salt Lake: A barometer of low-frequency climatic variability. Water Resour. Res., 31 , 25032515.

    • Search Google Scholar
    • Export Citation
  • Lall, U., T. Sangoyomi, and H. D. I. Abarbanel, 1996: Nonlinear dynamics of the Great Salt Lake: Nonparametric forecasting. Water Resour. Res., 32 , 975985.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266 , 634637.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9 , 24072423.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10 , 111127.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., Y. Qian, and X. Bian, 2003: Hydroclimate of the western United States based on observations and regional climate simulation of 1981–2000. Part I: Seasonal statistics. J. Climate, 16 , 18921911.

    • Search Google Scholar
    • Export Citation
  • Lohmann, K., and M. Latif, 2005: Tropical Pacific decadal variability and the subtropical–tropical cells. J. Climate, 18 , 51635178.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., 2004: On smoothing potentially non-stationary climate time series. Geophys. Res. Lett., 31 , L07214. doi:10.1029/2004GL019569.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and J. Park, 1996: Greenhouse warming and changes in the seasonal cycle of temperature: Model versus observation. Geophys. Res. Lett., 23 , 11111114.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., U. Lall, and B. Saltzman, 1995: Decadal and secular climate variability: Understanding the rise and fall of the Great Salt Lake. Geophys. Res. Lett., 22 , 937940.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78 , 10691079.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., 1999: Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophys. Res. Lett., 26 , 855858.

    • Search Google Scholar
    • Export Citation
  • Moller, A. L., and R. R. Gillies, 2008: Utah Climate. 2nd ed. Utah Climate Center, Utah State University, 109 pp. [Available online at http://climate.usu.edu].

    • Search Google Scholar
    • Export Citation
  • Moon, Y-I., and U. Lall, 1996: Large scale atmospheric indices and the Great Salt Lake: Interannual and interdecadal variability. J. Hydrol. Eng., 1 , 5562.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 2007: Moist dynamics of tropical convection zones in monsoons, teleconnections, and global warming. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 267–301.

    • Search Google Scholar
    • Export Citation
  • Oppenheim, A. V., and R. V. Schafer, 1999: Discrete-Time Signal Processing. 2nd ed. Prentice-Hall, 870 pp.

  • Peixoto, J. P., and A. Oort, 1992: The Physics of Climate. Springer-Verlag, 520 pp.

  • Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

  • Plumb, R., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42 , 217229.

  • Rasmusson, E. M., 1967: Atmospheric water vapor transport and the water valance of North America. Part I: Characteristics of the water flux field. Mon. Wea. Rev., 95 , 403426.

    • Search Google Scholar
    • Export Citation
  • Roads, J. O., S. C. Chen, A. K. Guetter, and K. P. Geogakakos, 1994: Large-scale aspects of the U.S. hydrologic cycle. Bull. Amer. Meteor. Soc., 75 , 15891610.

    • Search Google Scholar
    • Export Citation
  • Sangoyomi, T. B., 1993: Climatic variability and dynamics of Great Salt Lake hydrology. Ph.D. dissertation, Utah State University, 247 pp.

  • Sangoyomi, T. B., U. Lall, and H. D. I. Abarbanel, 1996: Nonlinear dynamics of the Great Salt Lake: Dimension estimation. Water Resour. Res., 32 , 149160.

    • Search Google Scholar
    • Export Citation
  • Shafer, J. C., and W. J. Steenburgh, 2008: Climatology of strong intermountain cold fronts. Mon. Wea. Rev., 136 , 784807.

  • Shanahan, T. M., J. T. Overpeck, W. E. Sharp, C. A. Scholz, and J. A. Arko, 2007: Simulating the response of a closed-basin lake to recent climate changes in tropical West Africa (Lake Bosumtwi, Ghana). Hydrol. Processes, 21 , 16781691.

    • Search Google Scholar
    • Export Citation
  • Smirnov, V. V., and G. W. K. Moore, 1999: Spatial and temporal structure of atmospheric water vapor transport in the Mackenzie River basin. J. Climate, 12 , 681696.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79 , 6178.

  • Tourre, Y. M., B. Rajagopalan, Y. Kushnir, M. Barlow, and W. B. White, 2001: Patterns of coherent decadal and interdecadal climate signals in the Pacific Basin during the 20th century. Geophys. Res. Lett., 28 , 20692072.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109 , 784812.

    • Search Google Scholar
    • Export Citation
  • Wang, S-Y., R. R. Gillies, J. Jin, and L. E. Hipps, 2009: Recent rainfall cycle in the intermountain region as a quadrature amplitude modulation from the Pacific decadal oscillation. Geophys. Res. Lett., 36 , L02705. doi:10.1029/2008GL036329.

    • Search Google Scholar
    • Export Citation
  • Wang, S-Y., R. R. Gillies, L. E. Hipps, and J. Jin, 2010: A transition-phase teleconnection of the Pacific quasi-decadal oscillation. Climate Dyn., doi:10.1007/s00382-009-0722-5, in press.

    • Search Google Scholar
    • Export Citation
  • White, W. B., and Y. M. Tourre, 2003: Global SST/SLP waves during the 20th century. Geophys. Res. Lett., 30 , 1651. doi:10.1029/2003GL017055.

    • Search Google Scholar
    • Export Citation
  • White, W. B., and Z. Liu, 2008a: Non-linear alignment of El Niño to the 11-yr solar cycle. Geophys. Res. Lett., 35 , L19607. doi:10.1029/2008GL034831.

    • Search Google Scholar
    • Export Citation
  • White, W. B., and Z. Liu, 2008b: Resonant excitation of the quasi-decadal oscillation by the 11-year signal in the Sun’s irradiance. J. Geophys. Res., 113 , C01002. doi:10.1029/2006JC004057.

    • Search Google Scholar
    • Export Citation
  • Yoon, J. H., and T. C. Chen, 2006: Maintenance of the boreal forest rainbelts during northern summer. J. Climate, 19 , 14371449.

  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 990 271 21
PDF Downloads 462 159 14