Abstract
Information from the Tropical Rainfall Measuring Mission (TRMM) level 3 monthly 0.5° × 0.5° Convective and Stratiform Heating (CSH) product and TRMM Microwave Imager (TMI) 2A12 datasets is used to examine the four-dimensional latent heating (LH) structure over the Asian monsoon region between 1998 and 2006. High sea surface temperatures, ocean–land contrasts, and complex terrain produce large precipitation and atmospheric heating rates whose spatial and temporal characteristics are relatively undocumented. Analyses show interannual and intraseasonal LH variations with a large fraction of the interannual variability induced by internal intraseasonal variability. Also, the analyses identify a spatial dipole of LH anomalies between the equatorial Indian Ocean and the Bay of Bengal regions occurring during the summer active and suppressed phases of the monsoon intraseasonal oscillation. Comparisons made between the TRMM CSH and TMI 2A12 datasets indicate differences in the shape of the vertical profile of LH. A comparison of TRMM LH retrievals with sounding budget observations made during the South China Sea Monsoon Experiment shows a high correspondence in the timing of positive LH episodes during the rainy periods. Negative values of atmospheric heating, associated with radiative cooling and with upper-tropospheric cooling from nonsurface-precipitating clouds, are not captured by either of the TRMM datasets. In summary, LH algorithms based on satellite information are capable of representing the spatial and temporal characteristics of the vertically integrated heating in the Asian monsoon region. However, the vertical distribution of atmospheric heating is not captured accurately throughout different convective phases. It is suggested that satellite-derived radiative heating/cooling products are needed to supplement the LH products in order to give a better overall depiction of atmospheric heating.
Corresponding author address: Manuel D. Zuluaga, 311 Ferst Drive, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332. Email: mzuluaga@gatech.edu
This article included in the TRMM Diabatic Heating special collection.