Spatial and Temporal Distribution of Latent Heating in the South Asian Monsoon Region

Manuel D. Zuluaga School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Manuel D. Zuluaga in
Current site
Google Scholar
PubMed
Close
,
Carlos D. Hoyos School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Carlos D. Hoyos in
Current site
Google Scholar
PubMed
Close
, and
Peter J. Webster School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Peter J. Webster in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Information from the Tropical Rainfall Measuring Mission (TRMM) level 3 monthly 0.5° × 0.5° Convective and Stratiform Heating (CSH) product and TRMM Microwave Imager (TMI) 2A12 datasets is used to examine the four-dimensional latent heating (LH) structure over the Asian monsoon region between 1998 and 2006. High sea surface temperatures, ocean–land contrasts, and complex terrain produce large precipitation and atmospheric heating rates whose spatial and temporal characteristics are relatively undocumented. Analyses show interannual and intraseasonal LH variations with a large fraction of the interannual variability induced by internal intraseasonal variability. Also, the analyses identify a spatial dipole of LH anomalies between the equatorial Indian Ocean and the Bay of Bengal regions occurring during the summer active and suppressed phases of the monsoon intraseasonal oscillation. Comparisons made between the TRMM CSH and TMI 2A12 datasets indicate differences in the shape of the vertical profile of LH. A comparison of TRMM LH retrievals with sounding budget observations made during the South China Sea Monsoon Experiment shows a high correspondence in the timing of positive LH episodes during the rainy periods. Negative values of atmospheric heating, associated with radiative cooling and with upper-tropospheric cooling from nonsurface-precipitating clouds, are not captured by either of the TRMM datasets. In summary, LH algorithms based on satellite information are capable of representing the spatial and temporal characteristics of the vertically integrated heating in the Asian monsoon region. However, the vertical distribution of atmospheric heating is not captured accurately throughout different convective phases. It is suggested that satellite-derived radiative heating/cooling products are needed to supplement the LH products in order to give a better overall depiction of atmospheric heating.

Corresponding author address: Manuel D. Zuluaga, 311 Ferst Drive, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332. Email: mzuluaga@gatech.edu

This article included in the TRMM Diabatic Heating special collection.

Abstract

Information from the Tropical Rainfall Measuring Mission (TRMM) level 3 monthly 0.5° × 0.5° Convective and Stratiform Heating (CSH) product and TRMM Microwave Imager (TMI) 2A12 datasets is used to examine the four-dimensional latent heating (LH) structure over the Asian monsoon region between 1998 and 2006. High sea surface temperatures, ocean–land contrasts, and complex terrain produce large precipitation and atmospheric heating rates whose spatial and temporal characteristics are relatively undocumented. Analyses show interannual and intraseasonal LH variations with a large fraction of the interannual variability induced by internal intraseasonal variability. Also, the analyses identify a spatial dipole of LH anomalies between the equatorial Indian Ocean and the Bay of Bengal regions occurring during the summer active and suppressed phases of the monsoon intraseasonal oscillation. Comparisons made between the TRMM CSH and TMI 2A12 datasets indicate differences in the shape of the vertical profile of LH. A comparison of TRMM LH retrievals with sounding budget observations made during the South China Sea Monsoon Experiment shows a high correspondence in the timing of positive LH episodes during the rainy periods. Negative values of atmospheric heating, associated with radiative cooling and with upper-tropospheric cooling from nonsurface-precipitating clouds, are not captured by either of the TRMM datasets. In summary, LH algorithms based on satellite information are capable of representing the spatial and temporal characteristics of the vertically integrated heating in the Asian monsoon region. However, the vertical distribution of atmospheric heating is not captured accurately throughout different convective phases. It is suggested that satellite-derived radiative heating/cooling products are needed to supplement the LH products in order to give a better overall depiction of atmospheric heating.

Corresponding author address: Manuel D. Zuluaga, 311 Ferst Drive, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332. Email: mzuluaga@gatech.edu

This article included in the TRMM Diabatic Heating special collection.

Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Agudelo, P. A., J. A. Curry, C. D. Hoyos, and P. J. Webster, 2006: Transition between suppressed and active phases of intraseasonal oscillations in the Indo-Pacific warm pool. J. Climate, 19 , 55195530.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18 , (1–2). 85102.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., S. E. Zebiak, and M. A. Cane, 2001: Relative roles of elevated heating and surface temperature gradients in driving anomalous surface winds over tropical oceans. J. Atmos. Sci., 58 , 13711394.

    • Search Google Scholar
    • Export Citation
  • Clark, C. O., J. E. Cole, and P. J. Webster, 2000: Indian Ocean SST and Indian summer rainfall: Predictive relationships and their decadal variability. J. Climate, 13 , 25032519.

    • Search Google Scholar
    • Export Citation
  • Clark, C. O., P. J. Webster, and J. E. Cole, 2003: Interdecadal variability of the relationship between the Indian Ocean zonal mode and East African coastal rainfall anomalies. J. Climate, 16 , 548554.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., G. J. Huffman, and R. F. Adler, 2002: Precipitation anomalies in the tropical Indian Ocean and their relation to the initiation of El Niño. Geophys. Res. Lett., 29 , 1441. doi:10.1029/2001GL013399.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1985: Linear response of a stratified tropical atmosphere to convective forcing. J. Atmos. Sci., 42 , 19441959.

  • Ding, Y. H., and Y. J. Liu, 2001: Onset and the evolution of the summer monsoon over the South China Sea during SCSMEX Field Experiment in 1998. J. Meteor. Soc. Japan, 79 , 255276.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120 , 11111143.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., J. M. Slingo, and T. N. Palmer, 1997: Relations between interannual and intraseasonal monsoon variability as diagnosed from AMIP integrations. Quart. J. Roy. Meteor. Soc., 123 , 13231357.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., H. J. Wang, and J. L. McBride, 1996: Rawinsonde budget analyses during the TOGA COARE IOP. J. Atmos. Sci., 53 , 17611780.

    • Search Google Scholar
    • Export Citation
  • Fukutomi, Y., and T. Yasunari, 1999: 10-25 day intraseasonal variations of convection and circulation over East Asia and western North Pacific during early summer. J. Meteor. Soc. Japan, 77 , 753769.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Goswami, B. N., 1998: Interannual variations of Indian summer monsoon in a GCM: External conditions versus internal feedbacks. J. Climate, 11 , 501522.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and R. S. A. Mohan, 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14 , 11801198.

    • Search Google Scholar
    • Export Citation
  • Grossman, R. L., and D. R. Durran, 1984: Interaction of low-level flow with the western Ghat Mountains and offshore convection in the summer monsoon. Mon. Wea. Rev., 112 , 652672.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., H. H. Hendon, and R. A. Houze, 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41 , 113121.

    • Search Google Scholar
    • Export Citation
  • Harzallah, A., and R. Sadourny, 1997: Observed lead-lag relationships between Indian summer monsoon and some meteorological variables. Climate Dyn., 13 , 635648.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., and G. L. Stephens, 2007: Tropical oceanic cloudiness and the incidence of precipitation: Early results from CloudSat. Geophys. Res. Lett., 34 , L09811. doi:10.1029/2007GL029335.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60 , 396410.

  • Hoyos, C. D., and P. J. Webster, 2007: The role of intraseasonal variability in the nature of Asian monsoon precipitation. J. Climate, 20 , 44024424.

    • Search Google Scholar
    • Export Citation
  • Jian, J., P. J. Webster, and C. D. Hoyos, 2009: Large-scale controls on Ganges and Brahmaputra River discharge on intraseasonal and seasonal time-scales. Quart. J. Roy. Meteor. Soc., 135 , 353370.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2002: Characteristics of the 1998 summer monsoon oset over the northern South China Sea. J. Meteor. Soc. Japan, 80 , 561578.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2000: Intraseasonal and interannual variability of rainfall over India. J. Climate, 13 , 43664377.

  • Krishnamurti, T. N., and H. N. Bhalme, 1976: Oscillations of a monsoon system. Part 1: Observational aspects. J. Atmos. Sci., 33 , 19371954.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., B. Rajagopalan, and M. A. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284 , 21562159.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44 , 950972.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and Coauthors, 2000: A report of the field operations and early results of the South China Sea Monsoon Experiment (SCSMEX). Bull. Amer. Meteor. Soc., 81 , 12611270.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., X. Li, and H. T. Wu, 2002: Evolution of the large scale circulation, cloud structure and regional water cycle associated with the South China Sea monsoon during May–June, 1998. J. Meteor. Soc. Japan, 80 , 11291147.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59 , 15931606.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. L. Stephens, 2003: The tropical oceanic energy budget from the TRMM perspective. Part I: Algorithm and uncertainties. J. Climate, 16 , 19671985.

    • Search Google Scholar
    • Export Citation
  • Li, W., D. Wang, T. Lei, and H. Wang, 2009: Convective and stratiform rainfall and heating associated with the summer monsoon over the South China Sea based on TRMM data. Theor. Appl. Climatol., 95 , 157163.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., B. Mapes, M. H. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61 , 296309.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and R. H. Johnson, 1996: Heating, moistening, and rainfall over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53 , 33673383.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1962: Large-scale interactions. The Sea: Ideas and Observations on Progress in the Study of the Seas, M. N. Hill, Ed., John Wiley and Sons, 88–294.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50 , 20262037.

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2543.

  • Morita, J., Y. N. Takayabu, S. Shige, and Y. Kodama, 2006: Analysis of rainfall characteristics of the Madden-Julian oscillation using TRMM satellite data. Dyn. Atmos. Oceans, 42 , 107126.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66 , 823839.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., C. Chung, and E. DeWeaver, 2000: ENSO diabatic heating in ECMWF and NCEP–NCAR reanalyses, and NCAR CCM3 simulation. J. Climate, 13 , 31523171.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., C. D. Kummerow, Y. Hong, and W. K. Tao, 1999: Atmospheric latent heating distributions in the tropics derived from satellite passive microwave radiometer measurements. J. Appl. Meteor., 38 , 633664.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Improved method and uncertainties. J. Appl. Meteor. Climatol., 45 , 702720.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6 , 503538.

  • Riehl, H., and J. Simpson, 1979: The heat balance of the equatorial trough zone, revisited. Contrib. Atmos. Phys., 52 , 287304.

  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze, and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61 , 13411358.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., M. H. Zhang, and P. E. Ciesielski, 2007: Heating structures of the TRMM field campaigns. J. Atmos. Sci., 64 , 25932610.

    • Search Google Scholar
    • Export Citation
  • Shibagaki, Y., and Coauthors, 2006: Multiscale aspects of convective systems associated with an intraseasonal oscillation over the Indonesian Maritime Continent. Mon. Wea. Rev., 134 , 16821696.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and D. A. Paolino, 1983: The Southern Oscillation and long range forecasting of the summer monsoon rainfall over India. Mon. Wea. Rev., 111 , 18301837.

    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108 , 18401853.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, J., S. Gadgil, and P. J. Webster, 1993: Meridional propagation of large-scale monsoon convective zones. Meteor. Atmos. Phys., 52 , (1–2). 1535.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., P. J. Webster, R. H. Johnson, R. Engelen, and T. L’Ecuyer, 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical sea surface temperatures. J. Climate, 17 , 22132224.

    • Search Google Scholar
    • Export Citation
  • Sui, C. H., and K. M. Lau, 1989: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part II: Structure and propagation of mobile wave-CISK modes and their modification by lower boundary forcings. J. Atmos. Sci., 46 , 3756.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., and J. Simpson, 1993: The Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Ocean Sci., 4 , 1954.

  • Tao, W. K., S. Lang, J. Simpson, and R. Adler, 1993: Retrieval algorithms for estimating the vertical profiles of latent-heat release: Their applications for TRMM. J. Meteor. Soc. Japan, 71 , 685700.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., S. Lang, J. Simpson, W. S. Olson, D. Johnson, B. Ferrier, C. Kummerow, and R. Adler, 2000: Vertical profiles of latent heat release and their retrieval for TOGA COARE convective systems using a cloud resolving model, SSM/I, and ship-borne radar data. J. Meteor. Soc. Japan, 78 , 333355.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., and Coauthors, 2001: Retrieved vertical profiles of latent heat release using TRMM rainfall products for February 1988. J. Appl. Meteor., 40 , 957982.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., and Coauthors, 2006: Retrieval of latent heating from TRMM measurements. Bull. Amer. Meteor. Soc., 87 , 15551572.

  • Torrence, C., and P. J. Webster, 1999: Interdecadal changes in the ENSO–monsoon system. J. Climate, 12 , 26792690.

  • Wang, B., P. J. Webster, and H. Teng, 2005: Antecedents and self-induction of active-break south Asian monsoon unraveled by satellites. Geophys. Res. Lett., 32 , L04704. doi:10.1029/2004GL020996.

    • Search Google Scholar
    • Export Citation
  • Wang, B., P. J. Webster, K. Kikuchi, T. Yasunari, and Y. Qi, 2006: Boreal summer quasi-monthly oscillation in the global tropics. Climate Dyn., 27 , (7–8). 661675.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1972: Response of tropical atmosphere to local, steady forcing. Mon. Wea. Rev., 100 , 518541.

  • Webster, P. J., 1983: Mechanisms of monsoon low-frequency variability—Surface hydrological effects. J. Atmos. Sci., 40 , 21102124.

  • Webster, P. J., 1994: The role of hydrological processes in ocean-atmosphere interactions. Rev. Geophys., 32 , 427476.

  • Webster, P. J., and L. C. Chou, 1980: Low-frequency transitions of a simple monsoon system. J. Atmos. Sci., 37 , 368382.

  • Webster, P. J., and C. D. Hoyos, 2004: Prediction of the monsoon rainfall and river discharge on 15–30-day time scales. Bull. Amer. Meteor. Soc., 85 , 15551572.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103 , (C7). 1445114510.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98. Nature, 401 , 356360.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., H. M. Xu, N. H. Saji, Y. Q. Wang, and W. T. Liu, 2006: Role of narrow mountains in large-scale organization of Asian monsoon convection. J. Climate, 19 , 34203429.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., B. Chen, and W. W. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci., 57 , 23742396.

    • Search Google Scholar
    • Export Citation
  • Yang, S., W. S. Olson, J. J. Wang, T. L. Bell, E. A. Smith, and C. D. Kummerow, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part II: Evaluation of estimates using independent data. J. Appl. Meteor. Climatol., 45 , 721739.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57 , 227242.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43 , RG2003. doi:10.1029/2004RG000158.

  • Zuidema, P., and B. E. Mapes, 2008: Cloud vertical structure observed from space and ship over the Bay of Bengal and eastern tropical Pacific. J. Meteor. Soc. Japan, 86A , 205218.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 707 420 17
PDF Downloads 184 73 5