Great Plains Drought in Simulations of the Twentieth Century

Rachel R. McCrary Colorado State University, Fort Collins, Colorado

Search for other papers by Rachel R. McCrary in
Current site
Google Scholar
PubMed
Close
and
David A. Randall Colorado State University, Fort Collins, Colorado

Search for other papers by David A. Randall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Coupled global circulation models (CGCMs) have been widely used to explore potential future climate change. Before these climate projections can be trusted, the ability of the models to simulate present-day climate must be assessed. This study evaluates the ability of three CGCMs that participated in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change to simulate long-term drought over the Great Plains region with the same frequency and intensity as was observed during the twentieth century. The three models evaluated in this study are the Geophysical Fluid Dynamics Laboratory Coupled Model, version 2.0 (CM2.0); the National Centers for Atmospheric Research Community Climate System Model, version 3 (CCSM3); and third climate configuration of the Met Office Unified Model (HadCM3).

The models are shown to capture the broad features of the climatology of the Great Plains, with maximum precipitation occurring in early summer, as observed. However, all of the models overestimate annual precipitation rates. Also, in CCSM3, precipitation and evapotranspiration experience unrealistic decreases between the months of June and August.

Long-term droughts are found in each simulation of the twentieth century that are comparable in duration, severity, and spatial extent as has been observed. However, the processes found to be associated with simulated long-term droughts vary among the models. In both CM2.0 and HadCM3, low-frequency variations in Great Plains precipitation are found to correspond with low-frequency variations in tropical Pacific SSTs. In CCSM3, on the other hand, there appears to be no significant correlation between tropical Pacific SST variability and Great Plains precipitation. Strong land–atmosphere coupling in CCSM3 may explain the persistence of long-term droughts in this model.

Corresponding author address: Rachel McCrary, Department of Atmospheric Science, 1371 Campus Delivery, Colorado State University, Fort Collins, CO 80523. Email: rachel@atmos.colostate.edu

This article included in the U.S. CLIVAR Drought special collection.

Abstract

Coupled global circulation models (CGCMs) have been widely used to explore potential future climate change. Before these climate projections can be trusted, the ability of the models to simulate present-day climate must be assessed. This study evaluates the ability of three CGCMs that participated in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change to simulate long-term drought over the Great Plains region with the same frequency and intensity as was observed during the twentieth century. The three models evaluated in this study are the Geophysical Fluid Dynamics Laboratory Coupled Model, version 2.0 (CM2.0); the National Centers for Atmospheric Research Community Climate System Model, version 3 (CCSM3); and third climate configuration of the Met Office Unified Model (HadCM3).

The models are shown to capture the broad features of the climatology of the Great Plains, with maximum precipitation occurring in early summer, as observed. However, all of the models overestimate annual precipitation rates. Also, in CCSM3, precipitation and evapotranspiration experience unrealistic decreases between the months of June and August.

Long-term droughts are found in each simulation of the twentieth century that are comparable in duration, severity, and spatial extent as has been observed. However, the processes found to be associated with simulated long-term droughts vary among the models. In both CM2.0 and HadCM3, low-frequency variations in Great Plains precipitation are found to correspond with low-frequency variations in tropical Pacific SSTs. In CCSM3, on the other hand, there appears to be no significant correlation between tropical Pacific SST variability and Great Plains precipitation. Strong land–atmosphere coupling in CCSM3 may explain the persistence of long-term droughts in this model.

Corresponding author address: Rachel McCrary, Department of Atmospheric Science, 1371 Campus Delivery, Colorado State University, Fort Collins, CO 80523. Email: rachel@atmos.colostate.edu

This article included in the U.S. CLIVAR Drought special collection.

Save
  • Andreadis, K. M., E. A. Clark, A. W. Wood, A. F. Hamlet, and D. P. Lettenmaier, 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6 , 9851001.

    • Search Google Scholar
    • Export Citation
  • Borchert, J. R., 1950: The climate of the central North American grassland. Ann. Assoc. Amer. Geogr., 40 , 139.

  • Borchert, J. R., 1971: Dust Bowl in 1970s. Ann. Assoc. Am. Geogr., 61 , 122.

  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12 , 19902009.

    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., and D. P. Lettenmaier, 2003: Simulation of spatial variability in snow and frozen soil. J. Geophys. Res., 108 , 8858. doi:10.1029/2003JD003575.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model Version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Cook, B. I., R. L. Miller, and R. Seager, 2008: Dust and sea surface temperature forcing of the 1930s “Dust Bowl” drought. Geophys. Res. Lett., 35 , L08710. doi:10.1029/2008GL033486.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., R. Seager, M. A. Cane, and D. W. Stahle, 2007: North American drought: Reconstructions, causes, and consequences. Earth Sci. Rev., 81 , (1–2). 93134.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., D. A. Randall, and M. Khairoutdinov, 2007: Convective precipitation variability as a tool for general circulation model analysis. J. Climate, 20 , 91112.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism 1. Theory and observations. Water Resour. Res., 34 , 765776.

  • Findell, K. L., and E. A. B. Eltahir, 1997: An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois. Water Resour. Res., 33 , 725735.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., S. G. Yeager, R. B. Neale, S. Levis, and D. A. Baily, 2010: Improvements in a half degree atmosphere/land version of CCSM. Climate Dyn., doi:10.1007/s00382-009-0614-8, in press.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. Senior, H. Banks, J. Gregory, T. Johns, J. Mitchell, and R. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16 , (2–3). 147168.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7 , 611625.

    • Search Google Scholar
    • Export Citation
  • Herweijer, C., R. Seager, and E. Cook, 2006: North American droughts of the mid to late nineteenth century: A history, simulation and implication for Mediaeval drought. Holocene, 16 , 159171. doi:10.1191/0959683606hl917rp.

    • Search Google Scholar
    • Export Citation
  • Jacobs, K., D. B. Adams, and P. Gleick, 2000: Potential consequences of climate variability and change for the water resources of the United States. U.S. National Assessment of the Potential Consequences of Climate Variability and Change, Cambridge University Press, 405–435.

    • Search Google Scholar
    • Export Citation
  • Joseph, R., and S. Nigam, 2006: ENSO evolution and teleconnections in IPCC’s twentieth-century climate simulations: Realistic representation? J. Climate, 19 , 43604377.

    • Search Google Scholar
    • Export Citation
  • Kallis, G., 2008: Droughts. Ann. Rev. Environ. Res., 33 , 85118. doi:10.1146/annurev.environ.33.081307.123117.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Koster, R. D., M. J. Suarez, and M. Heiser, 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1 , 2646.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, R. W. Higgins, and H. M. Van den Dool, 2003: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett., 30 , 1241. doi:10.1029/2002GL016571.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7 , 590610.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and J. M. Slingo, 2005: Weak land–atmosphere coupling strength in HadAM3: The role of soil moisture variability. J. Hydrometeor., 6 , 670680.

    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99 , 1441514428.

    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, and E. F. Wood, 1996: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res., 101 , 2140321422.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and T. M. Smith, 1999: Covariability of aspects of North American climate with global sea surface temperatures on interannual to interdecadal timescales. J. Climate, 12 , 289302.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., J. L. Betancourt, S. T. Gray, M. A. Palecki, and H. G. Hidalgo, 2008: Associations of multi-decadal sea-surface temperature variability with US drought. Quat. Int., 188 , 3140. doi:10.1016/j.quaint.2007.07.001.

    • Search Google Scholar
    • Export Citation
  • McCrary, R. R., 2008: Great Plains drought in simulations of the twentieth century. M.S. thesis, Department of Atmospheric Science, Colorado State University, 199 pp.

  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Proc. Eighth Conf. on Applied Climatology, Boston, MA, Amer. Meteor. Soc., 179–184.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88 , 13831394.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T., and P. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25 , 693712. doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1960: Factors in the initiation, perpetuation and termination of drought. IASH Commission of Surface Waters Publication 51, 81–94.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1983: Some causes of United States drought. J. Climate Appl. Meteor., 22 , 3039.

  • Namias, J., 1991: Spring and summer 1988 drought over the contiguous United States—Causes and prediction. J. Climate, 4 , 5465.

  • Oglesby, R. J., 1991: Springtime soil moisture, natural climatic variability, and North American drought as simulated by the NCAR Community Climate Model 1. J. Climate, 4 , 890897.

    • Search Google Scholar
    • Export Citation
  • Oglesby, R. J., and D. J. Erickson, 1989: Soil moisture and the persistence of North American drought. J. Climate, 2 , 13621380.

  • Pal, J. S., and E. A. B. Eltahir, 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land–atmosphere system. J. Climate, 14 , 12271242.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and A. Namkhai, 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc., 81 , 12811299.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114 , 23522362.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., and S. Nigam, 2006: IPCC’s twentieth-century climate simulations: Varied representations of North American hydroclimate variability. J. Climate, 19 , 40414058.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004a: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17 , 485503.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004b: On the cause of the 1930s Dust Bowl. Science, 303 , 18551859.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2008: Potential predictability of long-term drought and pluvial conditions in the U.S. Great Plains. J. Climate, 21 , 802816.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and Coauthors, 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22 , 52515272.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, W. A. Robinson, Y. Kushnir, M. Ting, H-P. Huang, and J. Velez, 2005a: Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Quart. J. Roy. Meteor. Soc., 131B , 15011527. doi:10.1256/qj.04.96.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005b: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18 , 40654088.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316 , 11811184. doi:10.1126/science.1139601.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, M. Ting, M. Cane, N. Naik, and J. Miller, 2008: Would advance knowledge of 1930s SSTs have allowed prediction of the Dust Bowl drought? J. Climate, 21 , 32613281.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How often does it rain? J. Climate, 19 , 916934.

  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309 , 115118. doi:10.1126/science.1109496.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2007: Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Climate, 20 , 891907.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and H. Wang, 1997: Summertime U.S. precipitation variability and its relation to Pacific sea surface temperature. J. Climate, 10 , 18531873.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and G. W. Branstator, 1992: Issues in establishing causes of the 1988 drought over North America. J. Climate, 5 , 159172.

    • Search Google Scholar
    • Export Citation
  • Woodhouse, C. A., and J. T. Overpeck, 1998: 2000 years of drought variability in the central United States. Bull. Amer. Meteor. Soc., 79 , 26932714.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 929 349 17
PDF Downloads 138 63 1