Probability Density Functions of Liquid Water Path and Cloud Amount of Marine Boundary Layer Clouds: Geographical and Seasonal Variations and Controlling Meteorological Factors

Hideaki Kawai Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, and Numerical Prediction Division, Japan Meteorological Agency, Tokyo, Japan

Search for other papers by Hideaki Kawai in
Current site
Google Scholar
PubMed
Close
and
João Teixeira Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by João Teixeira in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The subgrid-scale variability of the liquid water path (LWP) of marine boundary layer clouds in areas that correspond to the typical grid size of large-scale (global climate and weather prediction) atmospheric models (200 km × 200 km) is investigated using geostationary satellite visible data. Geographical and seasonal variations of homogeneity, skewness, and kurtosis of probability density functions (PDFs) of LWP are discussed, in addition to cloud amount. It is clear that not only cloud amount but also these subgrid-scale statistics have well-defined geographical patterns and seasonal variations.

Furthermore, the meteorological factors that control subgrid-scale statistics of LWP that are related to boundary layer clouds are investigated using reanalysis data and PDFs of LWP data from satellites. Meteorological factors related to stability between 850 and 1000 hPa show high correlations with cloud amount and with the homogeneity, skewness, and kurtosis of PDFs of LWP of marine boundary layer clouds. The corrected gap of low-level moist static energy (CGLMSE) index, which is related to cloud-top entrainment instability, shows the highest correlation with the shape of LWP PDFs.

Corresponding author address: Hideaki Kawai, Numerical Prediction Division, Japan Meteorological Agency, 1-3-4 Otemachi, Chiyoda-ku, Tokyo, 100-8122, Japan. Email: h-kawai@met.kishou.go.jp

Abstract

The subgrid-scale variability of the liquid water path (LWP) of marine boundary layer clouds in areas that correspond to the typical grid size of large-scale (global climate and weather prediction) atmospheric models (200 km × 200 km) is investigated using geostationary satellite visible data. Geographical and seasonal variations of homogeneity, skewness, and kurtosis of probability density functions (PDFs) of LWP are discussed, in addition to cloud amount. It is clear that not only cloud amount but also these subgrid-scale statistics have well-defined geographical patterns and seasonal variations.

Furthermore, the meteorological factors that control subgrid-scale statistics of LWP that are related to boundary layer clouds are investigated using reanalysis data and PDFs of LWP data from satellites. Meteorological factors related to stability between 850 and 1000 hPa show high correlations with cloud amount and with the homogeneity, skewness, and kurtosis of PDFs of LWP of marine boundary layer clouds. The corrected gap of low-level moist static energy (CGLMSE) index, which is related to cloud-top entrainment instability, shows the highest correlation with the shape of LWP PDFs.

Corresponding author address: Hideaki Kawai, Numerical Prediction Division, Japan Meteorological Agency, 1-3-4 Otemachi, Chiyoda-ku, Tokyo, 100-8122, Japan. Email: h-kawai@met.kishou.go.jp

Save
  • Barker, H. W., B. A. Wiellicki, and L. Parker, 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part II: Validation using satellite data. J. Atmos. Sci., 53 , 23042316.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and R. Boers, 1990: A cloudiness transition in a marine boundary layer. J. Atmos. Sci., 47 , 14801497.

  • Bony, S., and K. A. Emanuel, 2001: A parameterization of the cloudiness associated with cumulus convection; evaluation using TOGA COARE data. J. Atmos. Sci., 58 , 31583183.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19 , 34453482.

  • Bougeault, P., 1981: Modeling the trade-wind cumulus boundary layer. Part I: Testing the ensemble cloud relations against numerical data. J. Atmos. Sci., 38 , 24142428.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., 1982: Cloud-ensemble relations based on the gamma probability distribution for the higher-order models of the planetary boundary layer. J. Atmos. Sci., 39 , 26912700.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85 , 967977.

  • Cheng, A., and K-M. Xu, 2009: A PDF-based cloud microphysical parameterization for simulation of drizzling boundary layer clouds. J. Atmos. Sci., 66 , 23172334.

    • Search Google Scholar
    • Export Citation
  • Considine, G., J. A. Curry, and B. Wielicki, 1997: Modeling cloud fraction and horizontal variability in marine boundary layer clouds. J. Geophys. Res., 102 , (D12). 1351713525.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., N. Bond, C. Fairall, J. Hare, M. J. McPhaden, and R. A. Weller, 2002: Enhanced oceanic and atmospheric monitoring underway in Eastern Pacific. Eos, Trans. Amer. Geophys. Union, 83 , 210211.

    • Search Google Scholar
    • Export Citation
  • Cuijpers, J., and P. Bechtold, 1995: A simple parameterization of cloud water related variables for use in boundary layer models. J. Atmos. Sci., 52 , 24862490.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37 , 131147.

  • Duynkerke, P. G., and J. Teixeira, 2001: Comparison of the ECMWF reanalysis with FIRE I observations: Diurnal variation of marine stratocumulus. J. Climate, 14 , 14661478.

    • Search Google Scholar
    • Export Citation
  • Eitzen, Z. A., K-M. Xu, and T. Wong, 2008: Statistical analyses of satellite cloud object data from CERES. Part V: Relationships between physical properties of boundary layer clouds. J. Climate, 21 , 66686688.

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7 , 465497.

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, J. Chou, and R. M. Welch, 1998: Global survey of the relationships of cloud albedo and liquid water path with droplet size using ISCCP. J. Climate, 11 , 15161528.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., A. M. Vogelmann, W. D. Collins, G. J. Zhang, and E. P. Luke, 2008: Investigation of regional and seasonal variations in marine boundary layer cloud properties from MODIS observations. J. Climate, 21 , 49554973.

    • Search Google Scholar
    • Export Citation
  • King, M. D., W. P. Menzel, and Y. Kaufman, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41 , 442458.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15871606.

  • Kuo, H-C., and W. H. Schubert, 1988: Stability of cloud-topped boundary layer. Quart. J. Roy. Meteor. Soc., 114 , 915944.

  • Larson, K., D. L. Hartmann, and S. A. Klein, 1999: The role of clouds, water vapor, circulation, and boundary layer structure in the sensitivity of the tropical climate. J. Climate, 12 , 23592374.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94 , 292309.

  • MacVean, M. K., 1993: A numerical investigation of the criterion for cloud-top entrainment instability. J. Atmos. Sci., 50 , 24812495.

    • Search Google Scholar
    • Export Citation
  • MacVean, M. K., and P. J. Mason, 1990: Cloud-top entrainment instability through small-scale mixing and its parameterization in numerical models. J. Atmos. Sci., 47 , 10121030.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 1977: The Gaussian cloud model relations. J. Atmos. Sci., 34 , 356358.

  • Miller, R. L., 1997: Tropical thermostats and low cloud cover. J. Climate, 10 , 409440.

  • Minnis, P., and E. F. Harrison, 1984a: Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. Part I: Analysis method. J. Climate Appl. Meteor., 23 , 9931011.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and E. F. Harrison, 1984b: Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. Part III: November 1978 radiative parameters. J. Climate Appl. Meteor., 23 , 10321051.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., and S. A. Klein, 2000: Unresolved spatial variability and microphysical process rates in large-scale models. J. Geophys. Res., 105 , 2705927065.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37 , 125130.

  • Rao, C. R. N., and N. Zhang, 1999: Calibration of the visible channel of the GOES imager using the Advanced Very High Resolution Radiometer. Preprints, 10th Conf. Atmospheric Radiation, Madison, WI, Amer. Meteor. Soc., 560–563.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., and J. E. Kristjánsoon, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11 , 15871614.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2004: Cloud representation in general-circulation models over the northern Pacific Ocean: A EUROCS intercomparison study. Quart. J. Roy. Meteor. Soc., 130 , 32453268.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme in the ECMWF model. Quart. J. Roy. Meteor. Soc., 113 , 899927.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116 , 435460.

    • Search Google Scholar
    • Export Citation
  • Sommeria, G., and J. Deardorff, 1977: Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci., 34 , 344355.

  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18 , 237273.

  • Stephens, G. L., and Coauthors, 2002: The Cloudsat Mission and the A-Train. Bull. Amer. Meteor. Soc., 83 , 17711790.

  • Sundqvist, H., E. Berge, and J. E. Kristjánsson, 1989: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117 , 16411657.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and T. F. Hogan, 2002: Boundary layer clouds in a global atmospheric model: Simple cloud cover parameterizations. J. Climate, 15 , 12611276.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., S. Cardoso, and A. P. Siebesma, and GPCI Team, 2008: Results from the first 2 years of the GCSS Pacific cross-section intercomparison. GEWEX NEWS, No. 18-4, International GEWEX Project Office, Silver Spring, MD, 1–4.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121 , 30403061.

  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59 , 19171942.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., S. P. Xie, H. Xu, and B. Wang, 2004: Regional model simulations of marine boundary layer clouds over the southeast Pacific off South America. Part I: Control experiment. Mon. Wea. Rev., 132 , 274296.

    • Search Google Scholar
    • Export Citation
  • Weinreb, M. P., M. Jamieson, N. Fulton, Y. Chen, J. X. Johnson, J. Bremer, C. Smith, and J. Baucom, 1997: Operational calibration of Geostationary Operational Environmental Satellite-8 and -9 imagers and sounders. Appl. Opt., 36 , 68956904.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and L. Parker, 1994: Frequency distributions of cloud liquid water path in oceanic boundary layer cloud as a function of regional cloud fraction. Preprints, Eighth Conf. on Atmospheric Radiation, Nashville, TN, Amer. Meteor. Soc., 415–417.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. R. Field, 2000: Relationships between total water, condensed water, and cloud fraction in stratiform clouds examined using aircraft data. J. Atmos. Sci., 57 , 18881905.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19 , 64256432.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine low cloud: The importance of mesoscale cellular convection. J. Climate, 19 , 17481764.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. R. Mechoso, 2008: Southeastern Pacific coupled climate field experiment. Eos, Trans. Amer. Geophys. Union, 89 .doi:10.1029/2008EO330003.

    • Search Google Scholar
    • Export Citation
  • Xu, K. M., and S. K. Krueger, 1991: Evaluation of cloudiness parameterizations using a cumulus ensemble model. Mon. Wea. Rev., 119 , 342367.

    • Search Google Scholar
    • Export Citation
  • Xu, K. M., and D. A. Randall, 1996: Evaluation of statistically based cloudiness parameterizations used in climate models. J. Atmos. Sci., 53 , 31033119.

    • Search Google Scholar
    • Export Citation
  • Xu, K. M., T. Wong, B. A. Wielicki, L. Parker, and Z. A. Eitzen, 2005: Statistical analyses of satellite cloud object data from CERES. Part I: Methodology and preliminary results of the 1998 El Niño/2000 La Niña. J. Climate, 18 , 24972514.

    • Search Google Scholar
    • Export Citation
  • Xu, K. M., T. Wong, B. A. Wielicki, and L. Parker, 2008: Statistical analyses of satellite cloud object data from CERES. Part IV: Boundary layer cloud objects during 1998 El Niño. J. Climate, 21 , 15001521.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 342 95 3
PDF Downloads 199 60 2