An Observed Tropical Oceanic Radiative–Convective Cloud Feedback

Matthew D. Lebsock Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Matthew D. Lebsock in
Current site
Google Scholar
PubMed
Close
,
Christian Kummerow Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Christian Kummerow in
Current site
Google Scholar
PubMed
Close
, and
Graeme L. Stephens Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Graeme L. Stephens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Anomalies of precipitation, cloud, thermodynamic, and radiation variables are analyzed on the large spatial scale defined by the tropical oceans. In particular, relationships between the mean tropical oceanic precipitation anomaly and radiative anomalies are examined. It is found that tropical mean precipitation is well correlated with cloud properties and radiative fields. In particular, the tropical mean precipitation anomaly is positively correlated with the top of the atmosphere reflected shortwave anomaly and negatively correlated with the emitted longwave anomaly. The tropical mean relationships are found to primarily result from a coherent oscillation of precipitation and the area of high-level cloudiness. The correlations manifest themselves radiatively as a modest decrease in net downwelling radiation at the top of the atmosphere, and a redistribution of energy from the surface to the atmosphere through reduced solar radiation to the surface and decreased longwave emission to space. Integrated over the tropical oceanic domain, the anomalous atmospheric column radiative heating is found to be about 10% of the magnitude of the anomalous latent heating. The temporal signature of the radiative heating is observed in the column mean temperature that indicates a coherent phase-lagged oscillation between atmospheric stability and convection. These relationships are identified as a radiative–convective cloud feedback that is observed on intraseasonal time scales in the tropical atmosphere.

Corresponding author address: Matthew D. Lebsock, Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523-1371. Email: lebsock@atmos.colostate.edu

Abstract

Anomalies of precipitation, cloud, thermodynamic, and radiation variables are analyzed on the large spatial scale defined by the tropical oceans. In particular, relationships between the mean tropical oceanic precipitation anomaly and radiative anomalies are examined. It is found that tropical mean precipitation is well correlated with cloud properties and radiative fields. In particular, the tropical mean precipitation anomaly is positively correlated with the top of the atmosphere reflected shortwave anomaly and negatively correlated with the emitted longwave anomaly. The tropical mean relationships are found to primarily result from a coherent oscillation of precipitation and the area of high-level cloudiness. The correlations manifest themselves radiatively as a modest decrease in net downwelling radiation at the top of the atmosphere, and a redistribution of energy from the surface to the atmosphere through reduced solar radiation to the surface and decreased longwave emission to space. Integrated over the tropical oceanic domain, the anomalous atmospheric column radiative heating is found to be about 10% of the magnitude of the anomalous latent heating. The temporal signature of the radiative heating is observed in the column mean temperature that indicates a coherent phase-lagged oscillation between atmospheric stability and convection. These relationships are identified as a radiative–convective cloud feedback that is observed on intraseasonal time scales in the tropical atmosphere.

Corresponding author address: Matthew D. Lebsock, Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523-1371. Email: lebsock@atmos.colostate.edu

Save
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419 , 224231.

  • Anderberg, M. R., 1973: Cluster Analysis for Applications. Academic Press, 359 pp.

  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41 , 253264.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes. J. Climate, 19 , 34453482.

  • Bretherton, C., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12 , 19902009.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., M. Zhang, B. A. Wielicki, D. F. Young, X-L. Zhou, and Y. Nikitenko, 2001: The influence of the 1998 El Niño upon cloud-radiative forcing over the Pacific warm pool. J. Climate, 14 , 21292137.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., F. P. J. Valero, P. J. Flatau, D. Lubin, H. Grassl, and P. Pilewskie, 1996: Radiative effects of convection in the tropical Pacific. J. Geophys. Res., 101 , 1499915012.

    • Search Google Scholar
    • Export Citation
  • Fowler, L., and D. A. Randall, 1994: A global radiative–convective feedback. Geophys. Res. Lett., 21 , 20352041.

  • Fu, Q., S. K. Krueger, and K. N. Liou, 1995: Interactions of radiation and convection in simulated tropical cloud clusters. J. Atmos. Sci., 52 , 13101328.

    • Search Google Scholar
    • Export Citation
  • Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res., 95 , 1868718703.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and M. L. Michelsen, 1993: Large-scale effects on the regulation of tropical sea surface temperature. J. Climate, 6 , 20492062.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19 , 56865699.

  • Jakob, C., and G. Tselioudis, 2003: Objective identification of cloud regimes in the tropical western Pacific. Geophys. Res. Lett., 30 , 2082. doi:10.1029/2003GL018367.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., and C. Schumacher, 2008: Precipitation and latent heating characteristics of the major tropical western Pacific cloud regimes. J. Climate, 21 , 43484364.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., G. Tselioudis, and T. Hume, 2005: The radiative, cloud, and thermodynamic properties of the major tropical western Pacific cloud regimes. J. Climate, 18 , 12031215.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., 1994: On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J. Climate, 7 , 559565.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and V. Ramanathan, 1990: Comparison of cloud forcing derived from the Earth Radiation Budget Experiment with that simulated by the NCAR Community Climate Model. J. Geophys. Res., 95 , 1167911698.

    • Search Google Scholar
    • Export Citation
  • Kubar, T., and D. L. Hartmann, 2007: Radiative and convective driving of tropical high clouds. J. Climate, 20 , 55105526.

  • Kummerow, C. D., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40 , 18011820.

    • Search Google Scholar
    • Export Citation
  • Lin, J., and B. E. Mapes, 2004: Radiation budget of the tropical intraseasonal oscillation. J. Atmos. Sci., 61 , 20502062.

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global scale circulation cells in the tropics with a 50 day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24 , 241259.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52 , 17841806.

  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and W. D. Collins, 1991: Thermodynamic regulation of the ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351 , 2732.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., G. Tselioudis, A. Polak, and C. Jakob, 2005: Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. Res. Lett., 32 , L21812. doi:10.1029/2005GL024584.

    • Search Google Scholar
    • Export Citation
  • Schiffer, R. A., and W. B. Rossow, 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. Bull. Amer. Meteor. Soc., 64 , 779784.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18 , 237273.

  • Stephens, G. L., and P. J. Webster, 1981: Clouds and climate: Sensitivity of simple systems. J. Atmos. Sci., 38 , 235247.

  • Stephens, G. L., and T. D. Ellis, 2008: Controls of global-mean precipitation increases in global warming GCM experiments. J. Climate, 21 , 61416155.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., P. J. Webster, R. H. Johnson, R. Engelen, and T. L’Ecuyer, 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical sea surface temperatures. J. Climate, 17 , 22132224.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S. C. van den Heever, and L. Pakula, 2008: Radiative–convective feedbacks in idealized states of radiative–convective equilibrium. J. Atmos. Sci., 65 , 38993916.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. D. Barnet, and J. M. Blaisdell, 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Remote Sens., 41 , 390409.

    • Search Google Scholar
    • Export Citation
  • Viju, J. O., R. P. Allan, and B. J. Soden, 2009: How robust are observed and simulated precipitation responses to tropical ocean warming? Geophys. Res. Lett., 36 , L14702. doi:10.1029/2009GL038276.

    • Search Google Scholar
    • Export Citation
  • Vonder Haar, T. H., and V. E. Suomi, 1969: Satellite observations of the earth’s radiation budget. Science, 163 , 667669.

  • von Storch, H., and F. W. Zwiers, 2001: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wallace, J. M., 1992: Effect of deep convection on the regulation of tropical SST. Nature, 377 , 230231.

  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77 , 853868.

    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. S. Timlin, 1993: Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proc. 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC, 52–57. [Available online at http://www.cdc.noaa.gov/people/klaus.wolter/MEI/].

    • Search Google Scholar
    • Export Citation
  • Wood, R., K. K. Comstock, C. S. Bretherton, C. Cornish, J. Tomlinson, D. R. Collins, and C. Fairall, 2008: Open cellular structure in marine stratocumulus sheets. J. Geophys. Res., 113 , D112207. doi:10.1029/2007JD009371.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., and D. L. Hartmann, 2008: Spatial and temporal dependence of clouds and their radiative impacts on the large-scale vertical velocity profile. J. Geophys. Res., 113 , D19201. doi:10.1029/2007JD009722.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 156 66 7
PDF Downloads 101 46 3