The Role of Oceanic Heat Transport and Wind Stress Forcing in Abrupt Millennial-Scale Climate Transitions

Olivier Arzel Climate Change Research Centre, The University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Olivier Arzel in
Current site
Google Scholar
PubMed
Close
,
Alain Colin de Verdière Laboratoire de Physique des Océans, Université de Bretagne Occidentale, Brest, France

Search for other papers by Alain Colin de Verdière in
Current site
Google Scholar
PubMed
Close
, and
Matthew H. England Climate Change Research Centre, The University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Matthew H. England in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The last glacial period was punctuated by rapid climate shifts, known as Dansgaard–Oeschger events, with strong imprint in the North Atlantic sector suggesting that they were linked with the Atlantic meridional overturning circulation. Here an idealized single-hemisphere three-dimensional ocean–atmosphere–sea ice coupled model is used to explore the possible origin of the instability driving these abrupt events and to provide a plausible explanation for the relative stability of the Holocene. Focusing on the physics of noise-free millennial oscillations under steady external (solar) forcing, it was shown that cold climates become unstable, that is, exhibit abrupt millennial-scale transitions, for significantly lower freshwater fluxes than warm climates, in agreement with previous studies making use of zonally averaged coupled models. This fundamental difference is a direct consequence of the weaker stratification of the glacial ocean, mainly caused by upper-ocean cooling. Using a two-hemisphere configuration of a coupled climate model of intermediate complexity, it is shown that this result is robust to the added presence of a bottom water mass of southern origin. The analysis reveals that under particular conditions, a pronounced interdecadal variability develops during warm interstadials. While the nature of the instability driving the millennial oscillations is identical to that found in ocean models under mixed boundary conditions, these interstadial–interdecadal oscillations share the same characteristics as those previously found in ocean models forced by fixed surface fluxes. The wind stress forcing is shown to profoundly affect both the properties and bifurcation structure of thermohaline millennial oscillations across a wide range of variation of freshwater forcing. In particular, it is shown that the wind stress forcing favors the maintenance of thermally direct meridional overturning circulations during the cold stadial phases of Dansgaard–Oeschger cycles.

Corresponding author address: Olivier Arzel, Climate Change Research Centre, The University of New South Wales, NSW 2052, Sydney, Australia. Email: o.arzel@unsw.edu.au

Abstract

The last glacial period was punctuated by rapid climate shifts, known as Dansgaard–Oeschger events, with strong imprint in the North Atlantic sector suggesting that they were linked with the Atlantic meridional overturning circulation. Here an idealized single-hemisphere three-dimensional ocean–atmosphere–sea ice coupled model is used to explore the possible origin of the instability driving these abrupt events and to provide a plausible explanation for the relative stability of the Holocene. Focusing on the physics of noise-free millennial oscillations under steady external (solar) forcing, it was shown that cold climates become unstable, that is, exhibit abrupt millennial-scale transitions, for significantly lower freshwater fluxes than warm climates, in agreement with previous studies making use of zonally averaged coupled models. This fundamental difference is a direct consequence of the weaker stratification of the glacial ocean, mainly caused by upper-ocean cooling. Using a two-hemisphere configuration of a coupled climate model of intermediate complexity, it is shown that this result is robust to the added presence of a bottom water mass of southern origin. The analysis reveals that under particular conditions, a pronounced interdecadal variability develops during warm interstadials. While the nature of the instability driving the millennial oscillations is identical to that found in ocean models under mixed boundary conditions, these interstadial–interdecadal oscillations share the same characteristics as those previously found in ocean models forced by fixed surface fluxes. The wind stress forcing is shown to profoundly affect both the properties and bifurcation structure of thermohaline millennial oscillations across a wide range of variation of freshwater forcing. In particular, it is shown that the wind stress forcing favors the maintenance of thermally direct meridional overturning circulations during the cold stadial phases of Dansgaard–Oeschger cycles.

Corresponding author address: Olivier Arzel, Climate Change Research Centre, The University of New South Wales, NSW 2052, Sydney, Australia. Email: o.arzel@unsw.edu.au

Save
  • Alley, R. B., 2007: Wally was right: Predictive ability of the North Atlantic “conveyor belt” hypothesis for abrupt climate change. Annu. Rev. Earth Planet. Sci., 35 , 241272.

    • Search Google Scholar
    • Export Citation
  • Alley, R. B., P. U. Clark, L. D. Keigwin, and R. S. Webb, 1999: Making sense of millennial-scale climate change. Mechanisms of Global Climate Change at Millennial Time Scales, Geophys. Monogr., Vol. 112, Amer. Geophys. Union, 385–394.

    • Search Google Scholar
    • Export Citation
  • Alley, R. B., S. Anandakrishnan, and P. Jung, 2001: Stochastic resonance in the North Atlantic. Paleoceanography, 16 , 190198.

  • Arzel, O., T. Huck, and A. Colin de Verdière, 2006: The different nature of interdecadal variability of the thermohaline circulation under mixed and flux boundary conditions. J. Phys. Oceanogr., 36 , 17031718.

    • Search Google Scholar
    • Export Citation
  • Arzel, O., A. Colin de Verdière, and T. Huck, 2007: On the origin of interdecadal oscillations in a coupled ocean–atmosphere model. Tellus, 59 , 367383.

    • Search Google Scholar
    • Export Citation
  • Arzel, O., M. H. England, and W. P. Sijp, 2008: Reduced stability of the Atlantic meridional overturning circulation due to wind stress feedback during glacial times. J. Climate, 21 , 62606282.

    • Search Google Scholar
    • Export Citation
  • Ashkenazy, Y., and E. Tziperman, 2007: A wind-induced thermohaline circulation hysteresis and millennial variability regimes. J. Phys. Oceanogr., 37 , 24462457.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., M. M. Holland, A. J. Weaver, and M. Eby, 2001: Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res., 106 , 24412464.

    • Search Google Scholar
    • Export Citation
  • Bond, G., W. Showers, M. Elliot, M. Evans, R. Lotti, I. Hajdas, G. Bonani, and S. Johnson, 1999: The North Atlantic’s 1–2 kyr climate rhythm: Relation to Heinrich events, Dansgaard/Oeschger cycles and the Little Ice Age. Mechanisms of Global Climate Change at Millennial Time Scales, Geophys. Monogr., Vol. 112, Amer. Geophys. Union, 35–58.

    • Search Google Scholar
    • Export Citation
  • Bond, G., and Coauthors, 2001: Persistent solar influence on North Atlantic climate during the Holocene. Science, 294 , 21302136.

  • Broecker, W. S., G. Bond, and M. Klas, 1990: A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography, 5 , 469477.

  • Clark, P. U., N. G. Pisias, T. F. Stocker, and A. J. Weaver, 2002: The role of the thermohaline circulation in abrupt climate change. Nature, 415 , 863869.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., 1988: Buoyancy driven planetary flows. J. Mar. Res., 46 , 215265.

  • Colin de Verdière, A., 2007: A simple model of millennial oscillations of the thermohaline circulation. J. Phys. Oceanogr., 37 , 11421155.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., and T. Huck, 1999: Baroclinic instability: An oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr., 29 , 893910.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., and L. te Raa, 2010: Weak oceanic heat transport as a cause of the instability of glacial climates. Climate Dyn., in press, doi:10.1007/s00382-009-0675-8.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., M. B. Jelloul, and F. Sevellec, 2006: On the bifurcation structure of thermohaline millennial oscillations. J. Climate, 19 , 57775795.

    • Search Google Scholar
    • Export Citation
  • Cuffey, K., and G. Glow, 1997: Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. J. Geophys. Res., 102 , 2638326396.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., and Coauthors, 1993: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364 , 218220.

    • Search Google Scholar
    • Export Citation
  • Ditlevsen, P. D., S. Ditlevsen, and K. K. Andersen, 2002: The fast climate fluctuations during the stadial and interstadial climate states. Advances in Geophysics, Vol. 35, Academic Press, 457–462.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., C. M. Bitz, and E. Tziperman, 2009: Rain driven by receding ice sheets as a cause of past climate change. Paleoceanography, 24 , PA4209. doi:10.1029/2009PA001778.

    • Search Google Scholar
    • Export Citation
  • Fanning, A. F., and A. J. Weaver, 1996: An atmospheric energy-moisture balance model: Climatology, interpentadal climate change, and coupling to an ocean general circulation model. J. Geophys. Res., 101 , 111128.

    • Search Google Scholar
    • Export Citation
  • Ganopolski, A., and S. Rahmstorf, 2001: Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409 , 153158.

  • Ganopolski, A., and S. Rahmstorf, 2002: Abrupt glacial climate changes due to stochastic resonance. Phys. Rev. Lett., 88 , 038501. doi:10.1103/PhysRevLett.88.038501.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycanl mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gildor, H., and E. Tziperman, 2003: Sea-ice switches and abrupt climate change. Philos. Trans. Roy. Soc. London, 361A , 19351944.

  • Green, J. S. A., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96 , 157185.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., J. D. Opsteegh, F. M. Selten, and X. Wang, 2001: Rapid transitions and ultra-low frequency behaviour in a 40 kyr integration with a coupled climate model of intermediate complexity. Climate Dyn., 17 , 559570.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2005: The gap between simulating and understanding in climate modeling. Bull. Amer. Meteor. Soc., 86 , 16091614.

  • Huck, T., A. Colin de Verdière, and A. Weaver, 1999: Interdecadal variability of the thermohaline circulation in box-ocean models forced by fixed surface fluxes. J. Phys. Oceanogr., 29 , 865892.

    • Search Google Scholar
    • Export Citation
  • Huck, T., G. Vallis, and A. Colin de Verdière, 2001: On the robustness of the interdecadal modes of the thermohaline circulation. J. Climate, 14 , 940963.

    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., R. Sayag, and E. Tziperman, 2004: A “triple sea-ice state” mechanism for the abrupt warming and synchronous ice sheet collapses during Heinrich events. Paleoceanography, 19 , PA3004. doi:10.1029/2004PA001009.

    • Search Google Scholar
    • Export Citation
  • Lang, C., M. Leuenberger, and J. Schwander, 1999: 16°C rapid temperature variation in central Greenland 70 kyr ago. Science, 286 , 934937.

    • Search Google Scholar
    • Export Citation
  • Le Treut, H., and M. Ghil, 1983: Orbital forcing, climatic interactions, and glaciation cycles. J. Geophys. Res., 88 , 51675190.

  • Loving, J. L., and G. K. Vallis, 2005: Mechanisms for climate variability during glacial and interglacial periods. Paleoceanography, 20 , PA4024. doi:10.1029/2004PA001113.

    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., and Coauthors, 2007: Atlantic meridional overturning circulation during the Last Glacial Maximum. Science, 316 , 6669.

    • Search Google Scholar
    • Export Citation
  • Meissner, K. J., M. Eby, A. J. Weaver, and O. A. Saenko, 2008: CO2 threshold for millennial-scale oscillations in the climate system: Implications for global warming scenarios. Climate Dyn., 30 , 161174.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., J. Alexander, and A. Weaver, 2008: Stochastic models of the meridional overturning circulation: Time scales and patterns of variability. Philos. Trans. Roy. Soc. London, 366A , 25272544.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45A , 19772010.

  • North, G. R., R. F. Cahalan, and J. A. Coakley, 1981: Energy balance climate models. Rev. Geophys. Space Phys., 19 , 91121.

  • North Greenland Ice Core Project Members, 2004: High-resolution record of Northern Hemisphere climate extending into the last glacial period. Nature, 431 , 147151.

    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., and A. Colin de Verdière, 2002: SOFAR floats reveal midlatitude intermediate North Atlantic general circulation. Part I: A Lagrangian descriptive view. J. Phys. Oceanogr., 32 , 20202033.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., C. D. Hewitt, T. M. Marchitto, E. Brady, A. Abe-Ouchi, M. Crucifix, S. Murakami, and S. L. Weber, 2007: Last glacial maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophys. Res. Lett., 34 , L12706. doi:10.1029/2007GL029475.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R., 1996: MOM 2 documentation user’s guide and reference manual. Version 2.0. Geophysical Fluid Dynamics Laboratory Ocean Tech. Rep., 232 pp.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., and Coauthors, 2005: Thermohaline circulation hysteresis: A model intercomparison. Geophys. Res. Lett., 32 , L23605. doi:10.1029/2005GL023655.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, T. L., and E. Thomsen, 2004: The role of the North Atlantic Drift in the millennial timescale glacial climate fluctuations. Palaeogeogr. Palaeoclimatol. Palaeoecol., 210 , 101116.

    • Search Google Scholar
    • Export Citation
  • Rooth, C., 1982: Hydrology and ocean circulation. Prog. Oceanogr., 11 , 131149.

  • Sakai, K., and W. R. Peltier, 1995: A simple model of the Atlantic thermohaline circulation: Internal and forced variability with paleoclimatological implications. J. Geophys. Res., 100 , (C7). 1345513479.

    • Search Google Scholar
    • Export Citation
  • Sakai, K., and W. R. Peltier, 1996: A multi-basin reduced model of the global thermohaline circulation: Internal and forced variability with paleoclimatological implications. J. Geophys. Res., 101 , 2253522562.

    • Search Google Scholar
    • Export Citation
  • Sakai, K., and W. R. Peltier, 1997: Dansgaard–Oeschger oscillations in a coupled atmosphere–ocean climate model. J. Climate, 10 , 949970.

    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1986: A simplified linear ocean circulation theory. J. Mar. Res., 44 , 695711.

  • Sarnthein, M., K. Winn, S. J. A. Jung, J-C. Duplessy, L. Labeyrie, H. Erlenkeuser, and G. Ganssen, 1994: Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography, 9 , 209267.

    • Search Google Scholar
    • Export Citation
  • Schmidt, M. W., M. J. Vautravers, and H. J. Spero, 2006: Rapid subtropical North Atlantic salinity oscillations across Dansgaard-Oeschger cycles. Nature, 443 , 561564.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., M. Yoshimori, and A. J. Weaver, 2002: Instability of glacial climate in a model of the ocean-atmosphere-cryosphere system. Science, 295 , 14891493.

    • Search Google Scholar
    • Export Citation
  • Severinghaus, J. P., and E. J. Brook, 1999: Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science, 286 , 930934.

    • Search Google Scholar
    • Export Citation
  • Shin, S-I., Z. Liu, B. Otto-Bliesner, E. C. Brady, J. E. Kutzbach, and S. P. Harrison, 2003: A simulation of the Last Glacial Maximum climate using the NCAR-CCSM. Climate Dyn., 20 , 127151.

    • Search Google Scholar
    • Export Citation
  • Skinner, L. C., and H. Elderfield, 2007: Rapid fluctuations in the deep North Atlantic heat budget during the last glacial period. Paleoceanography, 22 , PA1205. doi:10.1029/2006PA001338.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., 2000: Past and future reorganization in the climate system. Quat. Sci. Rev., 19 , 301319.

  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13 , 224230.

  • Stone, P. H., and M. S. Yao, 1990: Development of two-dimensional zonally averaged statistical–dynamical model. Part III: The parameterization of the eddy fluxes of heat and moisture. J. Climate, 3 , 726740.

    • Search Google Scholar
    • Export Citation
  • Strogatz, S. H., 1994: Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry and Engineering. Perseus Books, 498 pp.

    • Search Google Scholar
    • Export Citation
  • te Raa, L. A., and H. A. Dijkstra, 2002: Instability of the thermohaline ocean circulation on interdecadal time scales. J. Phys. Oceanogr., 32 , 138160.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and H. Goosse, 2004: Is the wind stress forcing essential for the meridional overturning circulation? Geophys. Res. Lett., 31 , L04303. doi:10.1029/2003GL018777.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., H. Gildor, M. Schultz, and E. Tziperman, 2003: Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses. J. Climate, 16 , 25692585.

    • Search Google Scholar
    • Export Citation
  • van Geel, B., O. M. Raspopov, H. Renssen, J. van der Plicht, V. A. Dergachev, and H. A. J. Meijer, 1999: The role of solar forcing upon climate change. Quat. Sci. Rev., 18 , 331338.

    • Search Google Scholar
    • Export Citation
  • Vélez-Belchí, P., A. Alvarez, P. Colet, J. Tintoré, and R. L. Haney, 2001: Stochastic resonance in the thermohaline circulation. Geophys. Res. Lett., 28 , 20532056.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1985: The thermohaline circulation and the control of ice ages. Palaeogeogr. Palaeoclimatol. Palaeoecol., 50 , 323332.

  • Wang, Z., and L. A. Mysak, 2006: Glacial abrupt climate changes and Dansgaard-Oeschger oscillations in a coupled climate model. Paleoceanography, 21 , PA2001. doi:10.1029/2005PA001238.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and E. S. Sarachik, 1990: On the importance of vertical resolution in certain ocean general circulation models. J. Phys. Oceanogr., 20 , 600609.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and E. S. Sarachik, 1991: The role of mixed boundary conditions in numerical models of the ocean’s climate. J. Phys. Oceanogr., 21 , 14701493.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., J. Marotzke, P. F. Cummins, and E. S. Sarachik, 1993: Stability and variability of the thermohaline circulation. J. Phys. Oceanogr., 23 , 3960.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and Coauthors, 2001: The UVic Earth System Climate Model: Model description, climatology, and applications to past, present and future climates. Atmos.–Ocean, 34 , 10671109.

    • Search Google Scholar
    • Export Citation
  • Welander, P., 1977: Thermal oscillations in a fluid heated from below and cooled to freezing from above. Dyn. Atmos. Oceans, 1 , 215223.

    • Search Google Scholar
    • Export Citation
  • Welander, P., 1982: A simple heat-salt oscillator. Dyn. Atmos. Oceans, 6 , 233242.

  • Winton, M., 1993: Deep decoupling oscillations of the oceanic thermohaline circulation. Ice in the Climate System, W. R. Peltier, Ed., NATO ASI Series, Vol. 112, Springer Verlag, 417–432.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 1997: The effect of cold climate upon North Atlantic Deep Water formation in a simple ocean–atmosphere model. J. Climate, 10 , 3751.

    • Search Google Scholar
    • Export Citation
  • Winton, M., and E. S. Sarachik, 1993: Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J. Phys. Oceanogr., 23 , 13891410.

    • Search Google Scholar
    • Export Citation
  • Yu, E-F., R. Francois, and M. P. Bacon, 1996: Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature, 379 , 689694.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 211 96 16
PDF Downloads 131 56 14