A Global Survey of Static Stability in the Stratosphere and Upper Troposphere

Kevin M. Grise Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Kevin M. Grise in
Current site
Google Scholar
PubMed
Close
,
David W. J. Thompson Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David W. J. Thompson in
Current site
Google Scholar
PubMed
Close
, and
Thomas Birner Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Thomas Birner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. However, the magnitude and structure of finescale features in this field are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply more than six years of high vertical resolution global positioning system radio occultation temperature profiles to document the long-term mean structure and variability of the global static stability field in the stratosphere and upper troposphere.

The most pronounced feature in the long-term mean static stability field is the well-known transition from low values in the troposphere to high values in the stratosphere. Superposed on this general structure are a series of finer-scale features: a minimum in static stability in the tropical upper troposphere, a broad band of high static stability in the tropical stratosphere, increases in static stability within the core of the stratospheric polar vortices, and a shallow but pronounced maximum in static stability just above the tropopause at all latitudes [i.e., the “tropopause inversion layer” (TIL)].

The results shown here provide the first global survey of static stability using high vertical resolution data and also uncover two novel aspects of the static stability field. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ∼17 and ∼19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10° and 15° latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.

Corresponding author address: Kevin M. Grise, Dept. of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. Email: kgrise@atmos.colostate.edu

Abstract

Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. However, the magnitude and structure of finescale features in this field are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply more than six years of high vertical resolution global positioning system radio occultation temperature profiles to document the long-term mean structure and variability of the global static stability field in the stratosphere and upper troposphere.

The most pronounced feature in the long-term mean static stability field is the well-known transition from low values in the troposphere to high values in the stratosphere. Superposed on this general structure are a series of finer-scale features: a minimum in static stability in the tropical upper troposphere, a broad band of high static stability in the tropical stratosphere, increases in static stability within the core of the stratospheric polar vortices, and a shallow but pronounced maximum in static stability just above the tropopause at all latitudes [i.e., the “tropopause inversion layer” (TIL)].

The results shown here provide the first global survey of static stability using high vertical resolution data and also uncover two novel aspects of the static stability field. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ∼17 and ∼19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10° and 15° latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.

Corresponding author address: Kevin M. Grise, Dept. of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. Email: kgrise@atmos.colostate.edu

Save
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmospheric Dynamics. Academic Press, 489 pp.

  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89 , 313333.

  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294 , 581584.

  • Bell, S. W., and M. A. Geller, 2008: Tropopause inversion layer: Seasonal and latitudinal variations and representation in standard radiosonde data and global models. J. Geophys. Res., 113 , D05109. doi:10.1029/2007JD009022.

    • Search Google Scholar
    • Export Citation
  • Birner, T., 2006: Fine-scale structure of the extratropical tropopause region. J. Geophys. Res., 111 , D04104. doi:10.1029/2005JD006301.

  • Birner, T., 2010: Residual circulation and tropopause structure. J. Atmos. Sci., in press.

  • Birner, T., A. Dörnbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes? Geophys. Res. Lett., 29 , 1700. doi:10.1029/2002GL015142.

    • Search Google Scholar
    • Export Citation
  • Birner, T., D. Sankey, and T. G. Shepherd, 2006: The tropopause inversion layer in models and analyses. Geophys. Res. Lett., 33 , L14804. doi:10.1029/2006GL026549.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12 , 19902009.

    • Search Google Scholar
    • Export Citation
  • Dima, I. M., and J. M. Wallace, 2007: Structure of the annual-mean equatorial planetary waves in the ERA-40 reanalyses. J. Atmos. Sci., 64 , 28622880.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2008: Midlatitude static stability in simple and comprehensive general circulation models. J. Atmos. Sci., 65 , 10491062.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63 , 25482566.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47 , RG1004. doi:10.1029/2008RG000267.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and P. M. Forster, 2002: A climatology of the tropical tropopause layer. J. Meteor. Soc. Japan, 80 , 911924.

  • Gettelman, A., and T. Birner, 2007: Insights into tropical tropopause layer processes using global models. J. Geophys. Res., 112 , D23104. doi:10.1029/2007JD008945.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Hajj, G. A., and Coauthors, 2004: CHAMP and SAC-C atmospheric occultation results and intercomparisons. J. Geophys. Res., 109 , D06109. doi:10.1029/2003JD003909.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1976: The structure of the stratosphere in the Southern Hemisphere during late winter 1973 as observed by satellite. J. Atmos. Sci., 33 , 11411154.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., J. Scinocca, and M. Greenslade, 2001: Formation and maintenance of the extratropical tropopause by baroclinic eddies. Geophys. Res. Lett., 28 , 41794182.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1982: On the height of the tropopause and the static stability of the troposphere. J. Atmos. Sci., 39 , 412417.

  • Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124 , 15791604.

  • Juckes, M. N., 2000: The static stability of the midlatitude troposphere: The relevance of moisture. J. Atmos. Sci., 57 , 30503057.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kiehl, J. T., and S. Solomon, 1986: On the radiative balance of the stratosphere. J. Atmos. Sci., 43 , 15251534.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., and Coauthors, 1996: Initial results of radio occultation observations of earth’s atmosphere using the global positioning system. Science, 271 , 11071110.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1994: The effect of concentrated PV gradients on stationary waves. J. Atmos. Sci., 51 , 34553466.

  • Lindzen, R. S., and G. Roe, 1997: The effect of concentrated PV gradients on stationary waves: Correction. J. Atmos. Sci., 54 , 18151818.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Randel, W. J., F. Wu, and D. J. Gaffen, 2000: Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalysis. J. Geophys. Res., 105 , (D12). 1550915523.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and W. R. Ríos, 2003: Thermal variability of the tropical tropopause region derived from GPS/MET observations. J. Geophys. Res., 108 , 4024. doi:10.1029/2002JD002595.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., M. Park, F. Wu, and N. Livesey, 2007a: A large annual cycle in ozone above the tropical tropopause linked to the Brewer–Dobson circulation. J. Atmos. Sci., 64 , 44794488.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and P. Forster, 2007b: The extratropical tropopause inversion layer: Global observations with GPS data, and a radiative forcing mechanism. J. Atmos. Sci., 64 , 44894496.

    • Search Google Scholar
    • Export Citation
  • Ratnam, M. V., T. Tsuda, T. Kozu, and S. Mori, 2006: Long-term behavior of the Kelvin waves revealed by CHAMP/GPS RO measurements and their effects on the tropopause structure. Ann. Geophys., 24 , 13551366.

    • Search Google Scholar
    • Export Citation
  • Ryu, J-H., S. Lee, and S-W. Son, 2008: Vertically propagating Kelvin waves and tropical tropopause variability. J. Atmos. Sci., 65 , 18171837.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61 , 13171340.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., and W. J. Randel, 2007: Recent widening of the tropical belt: Evidence from tropopause observations. J. Geophys. Res., 112 , D20113. doi:10.1029/2007JD008861.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T., R. A. Plumb, and S. C. Wofsy, 2005: Preface. J. Atmos. Sci., 62 , 565566.

  • Simpson, I. R., M. Blackburn, and J. D. Haigh, 2009: The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci., 66 , 13471365.

    • Search Google Scholar
    • Export Citation
  • Son, S-W., and L. M. Polvani, 2007: Dynamical formation of an extra-tropical tropopause inversion layer in a relatively simple general circulation model. Geophys. Res. Lett., 34 , L17806. doi:10.1029/2007GL030564.

    • Search Google Scholar
    • Export Citation
  • Son, S-W., S. Lee, and S. B. Feldstein, 2007: Intraseasonal variability of the zonal-mean extratropical tropopause height. J. Atmos. Sci., 64 , 608620.

    • Search Google Scholar
    • Export Citation
  • Tomikawa, Y., Y. Nishimura, and T. Yamanouchi, 2009: Characteristics of tropopause and tropopause inversion layer in the polar region. Sci. Online Lett. Atmos., 5 , 141144.

    • Search Google Scholar
    • Export Citation
  • Wickert, J., and Coauthors, 2001: Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett., 28 , 32633266.

    • Search Google Scholar
    • Export Citation
  • Wirth, V., 2003: Static stability in the extratropical tropopause region. J. Atmos. Sci., 60 , 13951409.

  • Wirth, V., and T. Szabo, 2007: Sharpness of the extratropical tropopause in baroclinic life cycle experiments. Geophys. Res. Lett., 34 , L02809. doi:10.1029/2006GL028369.

    • Search Google Scholar
    • Export Citation
  • WMO, 1957: Meteorology – A three-dimensional science. WMO Bull., 6 , 134138.

  • Yulaeva, E., J. R. Holton, and J. M. Wallace, 1994: On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci., 51 , 169174.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., and K. P. Hoinka, 2001: The tropopause in the polar regions. J. Climate, 14 , 31173139.

  • Zängl, G., and V. Wirth, 2002: Synoptic-scale variability of the polar and subpolar tropopause: Data analysis and idealized PV inversions. Quart. J. Roy. Meteor. Soc., 128 , 23012315.

    • Search Google Scholar
    • Export Citation
  • Zhou, X. L., M. A. Geller, and M. H. Zhang, 2001: Tropical cold point tropopause characteristics derived from ECMWF reanalysis and soundings. J. Climate, 14 , 18231838.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 674 222 19
PDF Downloads 588 198 18