Emission Scenario Dependency of Precipitation on Global Warming in the MIROC3.2 Model

Hideo Shiogama National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Hideo Shiogama in
Current site
Google Scholar
PubMed
Close
,
Seita Emori National Institute for Environmental Studies, Tsukuba, and Center for Climate System Research, the University of Tokyo, Kashiwa, Japan

Search for other papers by Seita Emori in
Current site
Google Scholar
PubMed
Close
,
Kiyoshi Takahashi National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Kiyoshi Takahashi in
Current site
Google Scholar
PubMed
Close
,
Tatsuya Nagashima National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Tatsuya Nagashima in
Current site
Google Scholar
PubMed
Close
,
Tomoo Ogura National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Tomoo Ogura in
Current site
Google Scholar
PubMed
Close
,
Toru Nozawa National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Toru Nozawa in
Current site
Google Scholar
PubMed
Close
, and
Toshihiko Takemura Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan

Search for other papers by Toshihiko Takemura in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The precipitation sensitivity per 1 K of global warming in twenty-first-century climate projections is smaller in an emission scenario with larger greenhouse gas concentrations and aerosol emissions, according to the Model for Interdisciplinary Research on Climate 3.2 (MIROC3.2) coupled atmosphere–ocean general circulation model. The authors examined the reasons for the precipitation sensitivity to emission scenarios by performing separated individual forcing runs under high and low emission scenarios. It was found that the dependency on emission scenario is mainly caused by differences in black and organic carbon aerosol forcing (the sum of which is cooling forcing) between the emission scenarios and that the precipitation is more sensitive to carbon aerosols than well-mixed greenhouse gases. They also investigated the reason for the larger precipitation sensitivity (larger magnitude of precipitation decrease per 1 K cooling of temperature) in the carbon aerosol runs. Surface dimming due to the direct and indirect effects of carbon aerosols effectively decreases evaporation and precipitation, which enhances the precipitation sensitivity in the carbon aerosol runs. In terms of the atmospheric moisture cycle, although changes of vertical circulation offset the effects of changes in the atmospheric moisture in both the carbon aerosol and greenhouse gas runs, the amplitude of vertical circulation change per 1 K temperature change is less in the carbon aerosol runs. Furthermore, the second indirect effect of organic carbon aerosol counteracts the influence of the vertical circulation change. These factors lead to suppression of changes in the moisture’s atmospheric residence time and increase of the precipitation sensitivity in the carbon aerosol runs.

Corresponding author address: Hideo Shiogama, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan. Email: shiogama.hideo@nies.go.jp

Abstract

The precipitation sensitivity per 1 K of global warming in twenty-first-century climate projections is smaller in an emission scenario with larger greenhouse gas concentrations and aerosol emissions, according to the Model for Interdisciplinary Research on Climate 3.2 (MIROC3.2) coupled atmosphere–ocean general circulation model. The authors examined the reasons for the precipitation sensitivity to emission scenarios by performing separated individual forcing runs under high and low emission scenarios. It was found that the dependency on emission scenario is mainly caused by differences in black and organic carbon aerosol forcing (the sum of which is cooling forcing) between the emission scenarios and that the precipitation is more sensitive to carbon aerosols than well-mixed greenhouse gases. They also investigated the reason for the larger precipitation sensitivity (larger magnitude of precipitation decrease per 1 K cooling of temperature) in the carbon aerosol runs. Surface dimming due to the direct and indirect effects of carbon aerosols effectively decreases evaporation and precipitation, which enhances the precipitation sensitivity in the carbon aerosol runs. In terms of the atmospheric moisture cycle, although changes of vertical circulation offset the effects of changes in the atmospheric moisture in both the carbon aerosol and greenhouse gas runs, the amplitude of vertical circulation change per 1 K temperature change is less in the carbon aerosol runs. Furthermore, the second indirect effect of organic carbon aerosol counteracts the influence of the vertical circulation change. These factors lead to suppression of changes in the moisture’s atmospheric residence time and increase of the precipitation sensitivity in the carbon aerosol runs.

Corresponding author address: Hideo Shiogama, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan. Email: shiogama.hideo@nies.go.jp

Save
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245 , 12271230.

  • Allan, R. P., and B. J. Soden, 2007: Large discrepancy between observed and simulated precipitation trends in the ascending and descending branches of the tropical circulation. Geophys. Res. Lett., 34 , L18705. doi:10.1029/2007GL031460.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419 , 224232.

  • Allen, M. R., and P. A. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting. Part I: Theory. Climate Dyn., 21 , 477491.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., 2009: Forcing and response in simulated 20th and 21st century surface energy and precipitation trends. J. Geophys. Res., 114 , D17110. doi:10.1029/2009JD011749.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., P. M. Forster, and J. M. Gregory, 2009: A surface energy perspective on climate change. J. Climate, 22 , 25572570.

  • Berry, E. X., 1967: Cloud droplet growth by collection. J. Atmos. Sci., 24 , 688701.

  • Boer, G. J., 1993: Climate change and the regulation of the surface moisture and energy budgets. Climate Dyn., 8 , 225239.

  • Cox, P., and D. Stephenson, 2007: A changing climate for prediction. Science, 317 , 207208. doi:10.1126/science.1145956.

  • Denman, K. L., and Coauthors, 2007: Coupling between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 499–588.

    • Search Google Scholar
    • Export Citation
  • Douville, H., F. Chauvin, S. Planton, J-F. Royer, D. Salas, D. Mélia, and S. Tyteca, 2002: Sensitivity of the hydrological cycles to increasing amounts of greenhouse gases and aerosols. Climate Dyn., 20 , 4568.

    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32 , L17706. doi:10.1029/2005GL023272.

    • Search Google Scholar
    • Export Citation
  • Feichter, J., E. Roeckner, U. Lohmann, and B. Liepert, 2004: Nonlinear aspects of the climate response to greenhouse gas and aerosol forcing. J. Climate, 17 , 23842398.

    • Search Google Scholar
    • Export Citation
  • Forest, C. E., P. H. Stone, A. P. Sokolov, M. R. Allen, and M. D. Webster, 2002: Quantifying uncertainties in climate system properties with the use of recent climate observations. Science, 295 , 113117.

    • Search Google Scholar
    • Export Citation
  • Forest, C. E., P. H. Stone, and A. P. Sokolov, 2006: Estimated PDFs of climate system properties including natural and anthropogenic forcings. Geophys. Res. Lett., 33 , L01705. doi:10.1029/2005GL023977.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., A. J. Weaver, F. W. Zwiers, and M. F. Wehner, 2004: Detection of volcanic influence on global precipitation. Geophys. Res. Lett., 31 , L12217. doi:10.1029/2004GL020044.

    • Search Google Scholar
    • Export Citation
  • Gregory, J., R. Stouffer, S. Raper, P. Stott, and N. Rayner, 2002: An observationally based estimate of the climate sensitivity. J. Climate, 15 , 31173121.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102 , 68316864.

  • Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110 , D18104. doi:10.1029/2005JD005776.

  • Harris, G. R., D. M. H. Sexton, B. B. B. Booth, M. Collins, J. M. Murphy, and M. J. Webb, 2006: Frequency distributions of transient regional climate change from perturbed physics ensembles of general circulation model simulations. Climate Dyn., 27 , 357375. doi:10.1007/s00382-006-0142-8.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19 , 56865699.

  • Hibbard, K. A., G. A. Meehl, P. M. Cox, and P. Friedlingstein, 2007: A strategy for climate change stabilization experiments. Eos, Trans. Amer. Geophys. Union, 88 , 217219.

    • Search Google Scholar
    • Export Citation
  • Hulme, M., T. M. L. Wigley, E. M. Barrow, S. C. B. Raper, A. Centella, S. J. Smith, and A. C. Chipanshi, 2000: Using a climate scenario generator for vulnerability and adaptation assessments: MAGICC and SCENGEN Version 2.4 Workbook. Climatic Research Unit, 52 pp.

    • Search Google Scholar
    • Export Citation
  • Huntingford, C., and P. M. Cox, 2000: An analogue model to derive additional climate change scenarios from existing GCM simulations. Climate Dyn., 16 , 575586.

    • Search Google Scholar
    • Export Citation
  • Jones, A., J. M. Haywood, and O. Boucher, 2007: Aerosol forcing, climate response and climate sensitivity in the Hadley Centre climate model. J. Geophys. Res., 112 , D20211. doi:10.1029/2007JD008688.

    • Search Google Scholar
    • Export Citation
  • K-1 Model Developers, 2004: K-1 coupled GCM (MIROC) description. K-1 Tech. Rep. 1, H. Hasumi and S. Emori, Eds., Center for Climate Systems Research, University of Tokyo, 34 pp.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8 , 21812199.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., T. F. Stocker, F. Joos, and G. Plattner, 2003: Probabilistic climate change projections using neural networks. Climate Dyn., 21 , 257272.

    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., and M. R. Allen, 2009: Are changes in global precipitation constrained by the tropospheric energy budget? J. Climate, 22 , 499517.

    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., P. A. Stott, M. R. Allen, and M. A. Palmer, 2004: Detection and attribution of changes in 20th century land precipitation. Geophys. Res. Lett., 31 , L10203. doi:10.1029/2004GL019545.

    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., A. Stine, N. Y. Krakauer, and J. C. H. Chiang, 2008: How much will precipitation increase with global warming? Eos, Trans. Amer. Geophys. Union, 89 , 193194.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2008: Increases in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1 , 511514.

    • Search Google Scholar
    • Export Citation
  • Liepert, B. G., and M. Previdi, 2009: Do models and observations disagree on the rainfall response to global warming? J. Climate, 22 , 31563166.

    • Search Google Scholar
    • Export Citation
  • Liepert, B. G., J. Feichter, U. Lohmann, and E. Roeckner, 2004: Can aerosols spin down the water cycle in a warmer and moister world? Geophys. Res. Lett., 31 , L06207. doi:10.1029/2003GL019060.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5 , 715737.

  • Meehl, G. A., W. M. Washington, W. D. Collins, J. M. Arblaster, A. Hu, L. E. Buja, W. G. Strand, and H. Teng, 2005: How much more global warming and sea level rise? Science, 307 , 17691772.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., C. A. Wilson, and W. M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113 , 293332.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., T. C. Johns, M. Eagles, W. J. Ingram, and R. A. Davis, 1999: Towards the construction of climate change scenarios. Climatic Change, 41 , 547581.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., 2003: Pattern scaling. An examination of the accuracy of the technique for describing future climates. Climatic Change, 60 , 217242.

    • Search Google Scholar
    • Export Citation
  • Moss, R., and Coauthors, 2008: Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. IPCC Expert Meeting Rep., 169 pp. [Available online at http://www.ipcc.ch/meetings/session28/doc8.pdf].

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. I. Webb, M. Collins, M. R. Allen, and D. J. Stainforth, 2004: Quantifying uncertainties in climate change using a large ensemble of general circulation model predictions. Nature, 430 , 768772.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and Coauthors, 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • Nozawa, T., T. Nagashima, H. Shiogama, and S. A. Crooks, 2005: Detecting natural influence on surface air temperature change in the early twentieth century. Geophys. Res. Lett., 32 , L20719. doi:10.1029/2005GL023540.

    • Search Google Scholar
    • Export Citation
  • Nozawa, T., T. Nagashima, T. Ogura, T. Yokohata, N. Okada, and H. Shiogama, 2007: Climate change simulations with a coupled ocean–atmosphere GCM called the Model for Interdisciplinary Research on Climate: MIROC. CGER’S Supercomputer Monograph Rep. 12, 77 pp.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106 , 1477314777.

    • Search Google Scholar
    • Export Citation
  • Pall, P., M. R. Allen, and D. A. Stone, 2007: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28 , 351363.

    • Search Google Scholar
    • Export Citation
  • Previdi, M., and B. G. Liepert, 2008: Interdecadal variability in the precipitation response to global warming. Eos, Trans. Amer. Geophys. Union, 89 , 193195.

    • Search Google Scholar
    • Export Citation
  • Qian, Y., D. Gong, J. Fan, L. R. Leung, R. Bennartz, D. Chen, and W. Wang, 2009: Heavy pollution suppresses light rain in China: Observations and modeling. J. Geophys. Res., 114 , D00K02. doi:10.1029/2008JD011575.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nat. Geosci., 1 , 221227.

  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294 , 21192124.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., L. Bengtsson, J. Feichter, J. Lelieveld, and H. Rodhe, 1999: Transient climate change simulations with a coupled atmosphere–ocean GCM including the tropospheric sulfur cycle. J. Climate, 12 , 30043032.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., P. Stier, J. Feichter, S. Kloster, M. Esch, and I. Fischer-Bruns, 2006: Impact of carbonaceous aerosol emissions on regional climate change. Climate Dyn., 27 , 553571. doi:10.1007/s00382-006-0147-3.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, M. E. Schlesinger, and J. F. B. Mitchell, 1990: Developing climate scenarios from equilibrium GCM results. Max-Planck-Institut für Meteorologie Rep. 47, Hamburg, Germany, 29 pp.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., N. G. Andronova, A. Ghanem, S. Malyshev, T. Reichler, E. V. Rozanov, W. Wang, and F. Yang, 1997: Geographical scenarios of greenhouse-gas and anthropogenic-sulfate-aerosol induced climate changes. Rep. of the Climate Research Group, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 85 pp.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and Coauthors, 2000: Geographical distributions of temperature change for scenarios of greenhouse gas and sulfur dioxide emissions. Technol. Forecasting Soc. Change, 65 , 167193.

    • Search Google Scholar
    • Export Citation
  • Shiogama, H., T. Nozawa, and S. Emori, 2007: Robustness of climate change signals in near term predictions up to the year 2030: Changes in the frequency of temperature extremes. Geophys. Res. Lett., 34 , L12714. doi:10.1029/2007GL029318.

    • Search Google Scholar
    • Export Citation
  • Shiogama, H., A. Hasegawa, T. Nozawa, and S. Emori, 2008: Changes in mean and extreme precipitation in near-term predictions up to the year 2030. SOLA, 4 , 1720. doi:10.2151/sola.2008-005.

    • Search Google Scholar
    • Export Citation
  • Shiogama, H., and Coauthors, 2010: Emission scenario dependencies in climate change assessments of the hydrological cycle. Climatic Change, 99 , 321329. doi:10.1007/s10584-009-9765-1.

    • Search Google Scholar
    • Export Citation
  • Stainforth, D., and Coauthors, 2005: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433 , 403406.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. D. Ellis, 2008: Controls of global-mean precipitation increases in global warming GCM experiments. J. Climate, 21 , 61416155.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., and J. Yoshimura, 2004: Mechanism of tropical precipitation change due to CO2 increase. J. Climate, 17 , 238243.

  • Sugiyama, M., H. Shiogama, and S. Emori, 2010: Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc. Natl. Acad. Sci. USA, 107 , 571575.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., Y. Matsuoka, and H. Harasawa, 1998: Impacts of climate change on water resources, crop production and natural ecosystem in the Asia and Pacific region. J. Global Environ. Eng., 4 , 91103.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., H. Okamoto, Y. Maruyama, A. Numaguti, A. Higurashi, and T. Nakajima, 2000: Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J. Geophys. Res., 105 , (D14). 1785317873.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., T. Nakajima, O. Dubovik, B. N. Holben, and S. Kinne, 2002: Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Climate, 15 , 333352.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res., 110 , D02202. doi:10.1029/2004JD005029.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates with climate change. Climatic Change, 39 , 667694.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., M. Piepgrass, and T. L. Wolfe, 1984: An assessment of the impact on global cloud albedo. Tellus, 36B , 356366.

  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20 , 43164340.

  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317 , 233235.

  • Wetherald, R. T., R. J. Stouffer, and K. W. Dixon, 2001: Committed warming and its implications for climate change. Geophys. Res. Lett., 28 , 15351538.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., 2003: MAGICC/SCENGEN 4.1: Technical Manual. National Center for Atmospheric Research, 14 pp.

  • Wigley, T. M. L., 2005: The climate change commitment. Science, 307 , 17661769.

  • Wigley, T. M. L., S. C. B. Raper, S. Smith, and M. Hulme, 2000: The MAGICC/SCENGEN Climate Scenario Generator: Version 2.4: Technical Manual. Climatic Research Unit, University of East Anglia, 35 pp.

    • Search Google Scholar
    • Export Citation
  • Yang, F., A. Kumar, M. E. Schlesinger, and W. Wang, 2003: Intensity of hydrological cycles in warmer climates. J. Climate, 16 , 24192423.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., and A. J. Broccoli, 2008: Equilibrium response of an atmosphere-mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate, 21 , 43994423.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 351 174 22
PDF Downloads 160 80 8