Probing the Fast and Slow Components of Global Warming by Returning Abruptly to Preindustrial Forcing

Isaac M. Held NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Isaac M. Held in
Current site
Google Scholar
PubMed
Close
,
Michael Winton NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Michael Winton in
Current site
Google Scholar
PubMed
Close
,
Ken Takahashi Instituto Geofisico del Peru, Lima, Peru

Search for other papers by Ken Takahashi in
Current site
Google Scholar
PubMed
Close
,
Thomas Delworth NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Thomas Delworth in
Current site
Google Scholar
PubMed
Close
,
Fanrong Zeng NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Fanrong Zeng in
Current site
Google Scholar
PubMed
Close
, and
Geoffrey K. Vallis Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Geoffrey K. Vallis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The fast and slow components of global warming in a comprehensive climate model are isolated by examining the response to an instantaneous return to preindustrial forcing. The response is characterized by an initial fast exponential decay with an e-folding time smaller than 5 yr, leaving behind a remnant that evolves more slowly. The slow component is estimated to be small at present, as measured by the global mean near-surface air temperature, and, in the model examined, grows to 0.4°C by 2100 in the A1B scenario from the Special Report on Emissions Scenarios (SRES), and then to 1.4°C by 2300 if one holds radiative forcing fixed after 2100. The dominance of the fast component at present is supported by examining the response to an instantaneous doubling of CO2 and by the excellent fit to the model’s ensemble mean twentieth-century evolution with a simple one-box model with no long times scales.

Corresponding author address: Isaac M. Held, P.O. Box 308, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08542. Email: isaac.held@noaa.gov

Abstract

The fast and slow components of global warming in a comprehensive climate model are isolated by examining the response to an instantaneous return to preindustrial forcing. The response is characterized by an initial fast exponential decay with an e-folding time smaller than 5 yr, leaving behind a remnant that evolves more slowly. The slow component is estimated to be small at present, as measured by the global mean near-surface air temperature, and, in the model examined, grows to 0.4°C by 2100 in the A1B scenario from the Special Report on Emissions Scenarios (SRES), and then to 1.4°C by 2300 if one holds radiative forcing fixed after 2100. The dominance of the fast component at present is supported by examining the response to an instantaneous doubling of CO2 and by the excellent fit to the model’s ensemble mean twentieth-century evolution with a simple one-box model with no long times scales.

Corresponding author address: Isaac M. Held, P.O. Box 308, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08542. Email: isaac.held@noaa.gov

Save
  • Allen, M. R., P. A. Stott, J. F. M. Mitchell, P. Schnur, and T. Delworth, 2000: Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature, 407 , 617620.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and P. H. Whetton, 2001: A time-varying greenhouse warming pattern and the tropical–extratropical circulation linkage in the Pacific Ocean. J. Climate, 14 , 33373355.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9 , 21902196.

  • Delworth, T., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16 , 501515.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and P. M. Forster, 2008: Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res., 113 , D23105. doi:10.1029/2008JD010405.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and M. J. Webb, 2008: Tropospheric adjustment induces a cloud component in CO2 forcing. J. Climate, 21 , 5871.

  • Hansen, J. E., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110 , D18104. doi:10.1029/2005JD005776.

  • Hasselmann, K., R. Sausen, E. Maier-Reimer, and R. Voss, 1993: On the cold start problem in transient simulations with coupled atmosphere–ocean models. Climate Dyn., 9 , 5361.

    • Search Google Scholar
    • Export Citation
  • Kettleborough, J. A., B. B. B. Booth, P. A. Stott, and M. R. Allen, 2007: Estimates of uncertainty in predictions of global mean surface temperature. J. Climate, 20 , 843855.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., S. Krahenmann, D. J. Frame, and M. R. Allen, 2008: Comment on “heat capacity, time constant, and sensitivity of earth’s climate system” by S. E. Schwartz. J. Geophys. Res., 113 , D15103. doi:10.1029/2007JD009473.

    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., and J. C. H. Chiang, 2007: Control of land-ocean temperature contrast by ocean heat uptake. Geophys. Res. Lett., 34 , L13704. doi:10.1029/2007GL029755.

    • Search Google Scholar
    • Export Citation
  • Levy II, H., M. D. Schwarzkopf, L. Horowitz, V. Ramaswamy, and K. L. Findell, 2008: Strong sensitivity of late 21st century climate to projected changes in short-lived air pollutants. J. Geophys. Res., 113 , D06102. doi:10.1029/2007JD009176.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient response of a coupled atmosphere–ocean model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4 , 785818.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., and K. Caldeira, 2007: Transient climate-carbon simulations of planetary engineering. Proc. Natl. Acad. Sci. USA, 104 , 99499954.

    • Search Google Scholar
    • Export Citation
  • Raper, S. C. B., J. M. Grefory, and R. J. Stouffer, 2002: The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. J. Climate, 15 , 124130.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., G-K. Plattner, R. Knutti, and P. Freidlingstein, 2009: Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA, 106 , 17041709.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G., T. L. Delworth, V. Ramaswamy, R. J. Stouffer, A. Wittenberg, and F. Zeng, 2009: Volcanic signals in oceans. J. Geophys. Res., 114 , D16104. doi:10.1029/2008JD011673.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and J. A. Kettleborough, 2002: Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature, 416 , 723726.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part IV: Idealized climate response. J. Climate, 19 , 723740.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., W. J. Ingram, and J. M. Gregory, 2008: Time variation of effective climate sensitivity in GCMs. J. Climate, 21 , 50765090.

    • Search Google Scholar
    • Export Citation
  • Winton, M., K. Takahashi, and I. M. Held, 2010: Importance of ocean heat uptake efficacy to transient climate change. J. Climate, 23 , 23332344.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3588 1122 91
PDF Downloads 2210 628 43