Physical Mechanisms for the Maintenance of GCM-Simulated Madden–Julian Oscillation over the Indian Ocean and Pacific

Liping Deng Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, and Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Liping Deng in
Current site
Google Scholar
PubMed
Close
and
Xiaoqing Wu Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Search for other papers by Xiaoqing Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The kinetic energy budget is conducted to analyze the physical processes responsible for the improved Madden–Julian oscillation (MJO) simulated by the Iowa State University general circulation models (ISUGCMs). The modified deep convection scheme that includes the revised convection closure, convection trigger condition, and convective momentum transport (CMT) enhances the equatorial (10°S–10°N) MJO-related perturbation kinetic energy (PKE) in the upper troposphere and leads to a more robust and coherent eastward-propagating MJO signal. In the MJO source region, the Indian Ocean (45°–120°E), the upper-tropospheric MJO PKE is maintained by the vertical convergence of wave energy flux and the barotropic conversion through the horizontal shear of mean flow. In the convectively active region, the western Pacific (120°E–180°), the upper-tropospheric MJO PKE is supported by the convergence of horizontal and vertical wave energy fluxes. Over the central-eastern Pacific (180°–120°W), where convection is suppressed, the upper-tropospheric MJO PKE is mainly due to the horizontal convergence of wave energy flux. The deep convection trigger condition produces stronger convective heating that enhances the perturbation available potential energy (PAPE) production and the upward wave energy fluxes and leads to the increased MJO PKE over the Indian Ocean and western Pacific. The trigger condition also enhances the MJO PKE over the central-eastern Pacific through the increased convergence of meridional wave energy flux from the subtropical latitudes of both hemispheres. The revised convection closure affects the response of mean zonal wind shear to the convective heating over the Indian Ocean and leads to the enhanced upper-tropospheric MJO PKE through the barotropic conversion. The stronger eastward wave energy flux due to the increase of convective heating over the Indian Ocean and western Pacific by the revised closure is favorable to the eastward propagation of MJO and the convergence of horizontal wave energy flux over the central-eastern Pacific. The convection-induced momentum tendency tends to decelerate the upper-tropospheric wind, which results in a negative work to the PKE budget in the upper troposphere. However, the convection momentum tendency accelerates the westerly wind below 800 hPa over the western Pacific, which is partially responsible for the improved MJO simulation.

Corresponding author address: Liping Deng, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K9-24, Richland, WA 99352. E-mail: liping.deng@pnl.gov

Abstract

The kinetic energy budget is conducted to analyze the physical processes responsible for the improved Madden–Julian oscillation (MJO) simulated by the Iowa State University general circulation models (ISUGCMs). The modified deep convection scheme that includes the revised convection closure, convection trigger condition, and convective momentum transport (CMT) enhances the equatorial (10°S–10°N) MJO-related perturbation kinetic energy (PKE) in the upper troposphere and leads to a more robust and coherent eastward-propagating MJO signal. In the MJO source region, the Indian Ocean (45°–120°E), the upper-tropospheric MJO PKE is maintained by the vertical convergence of wave energy flux and the barotropic conversion through the horizontal shear of mean flow. In the convectively active region, the western Pacific (120°E–180°), the upper-tropospheric MJO PKE is supported by the convergence of horizontal and vertical wave energy fluxes. Over the central-eastern Pacific (180°–120°W), where convection is suppressed, the upper-tropospheric MJO PKE is mainly due to the horizontal convergence of wave energy flux. The deep convection trigger condition produces stronger convective heating that enhances the perturbation available potential energy (PAPE) production and the upward wave energy fluxes and leads to the increased MJO PKE over the Indian Ocean and western Pacific. The trigger condition also enhances the MJO PKE over the central-eastern Pacific through the increased convergence of meridional wave energy flux from the subtropical latitudes of both hemispheres. The revised convection closure affects the response of mean zonal wind shear to the convective heating over the Indian Ocean and leads to the enhanced upper-tropospheric MJO PKE through the barotropic conversion. The stronger eastward wave energy flux due to the increase of convective heating over the Indian Ocean and western Pacific by the revised closure is favorable to the eastward propagation of MJO and the convergence of horizontal wave energy flux over the central-eastern Pacific. The convection-induced momentum tendency tends to decelerate the upper-tropospheric wind, which results in a negative work to the PKE budget in the upper troposphere. However, the convection momentum tendency accelerates the westerly wind below 800 hPa over the western Pacific, which is partially responsible for the improved MJO simulation.

Corresponding author address: Liping Deng, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K9-24, Richland, WA 99352. E-mail: liping.deng@pnl.gov
Save
  • Chen, B., and M. Yanai, 2000: Comparison of the Madden–Julian oscillation (MJO) during the TOGA-COARE IOP with a 15-year climatology. J. Geophys. Res., 105, 21392149.

    • Search Google Scholar
    • Export Citation
  • Deng, L., and X. Wu, 2010: Effects of convective processes on GCM simulations of the Madden–Julian Oscillation. J. Climate, 23, 352377.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58, 978997.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., 1994: Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). J. Geophys. Res., 99, 55515568.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Khairoutdinov, M., D. Randall, and C. DeMott, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci., 62, 21362154.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11, 11311149.

    • Search Google Scholar
    • Export Citation
  • Liu, P., B. Wang, K. R. Sperber, T. Li, and G. A. Meehl, 2005: MJO in the NCAR CAM2 with the Tiedtke Convective Scheme. J. Climate, 18, 30073020.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40-50-day tropical oscillation: A review. Mon. Wea. Rev., 122, 814837.

  • Maloney, E. D., and D. L. Hartmann, 2001: The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14, 20152034.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61, 15211538.

    • Search Google Scholar
    • Export Citation
  • Mu, M., and G. J. Zhang, 2006: Energetics of Madden–Julian oscillations in the National Center for Atmospheric Research Community Atmosphere Model version 3 (NCAR CAM3). J. Geophys. Res., 111, D24112, doi:10.1029/2005JD007003.

    • Search Google Scholar
    • Export Citation
  • Mu, M., and G. J. Zhang, 2008: Energetics of the Madden–Julian oscillation in the NCAR CAM3: A composite view. J. Geophys. Res., 113, D05108, doi:10.1029/2007JD008700.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1970: A study of generation and conversion of eddy available potential energy in the tropics. J. Meteor. Soc. Japan, 48, 524528.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1972: Energy budget of wave disturbances over the Marshall Islands during the years of 1956 and 1958. J. Meteor. Soc. Japan, 50, 7184.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., S. Gualdi, S. Legutke, and V. Gayler, 2005: The Madden–Julian oscillation in ECHAM4 coupled and uncoupled GCMs. Climate Dyn., 25, 117140.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., and G. K. Walker, 1999: Microphysics of clouds with the relaxed Arakawa–Schubert Scheme (McRAS). Part I: Design and evaluation with GATE Phase III data. J. Atmos. Sci., 56, 31963220.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Tung, W.-W., and M. Yanai, 2002a: Convective momentum transport observed during the TOGA COARE IOP. Part I: General features. J. Atmos. Sci., 59, 18571871.

    • Search Google Scholar
    • Export Citation
  • Tung, W.-W., and M. Yanai, 2002b: Convective momentum transport observed during the TOGA COARE IOP. Part II: Case studies. J. Atmos. Sci., 59, 25352549.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12, 14231457.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and H.-R. Chang, 1988: Energy accumulation and emanation regions at low latitudes: Impacts of a zonally varying basic state. J. Atmos. Sci., 45, 803829.

    • Search Google Scholar
    • Export Citation
  • Wu, X., and M. Yanai, 1994: Effects of vertical wind shear on the cumulus transport of momentum: Observations and parameterization. J. Atmos. Sci., 51, 16401660.

    • Search Google Scholar
    • Export Citation
  • Wu, X., X. Liang, and G. J. Zhang, 2003: Seasonal migration of ITCZ precipitation across the equator: Why can’t GCMs simulate it? Geophys. Res. Lett., 30, 1824, doi:10.1029/2003GL017198.

    • Search Google Scholar
    • Export Citation
  • Wu, X., L. Deng, X. Song, G. Vettoretti, W. R. Peltier, and G. J. Zhang, 2007a: Impact of a modified convective scheme on the MJO and ENSO in a coupled climate model. Geophys. Res. Lett., 34, L16823, doi:10.1029/2007GL030637.

    • Search Google Scholar
    • Export Citation
  • Wu, X., L. Deng, X. Song, and G. J. Zhang, 2007b: Coupling of convective momentum transport with convective heating in global climate simulations. J. Atmos. Sci., 64, 13341349.

    • Search Google Scholar
    • Export Citation
  • Wu, X., S. Park, and Q. Min, 2008: Seasonal variation of cloud systems over ARM SGP. J. Atmos. Sci., 65, 21072129.

  • Yanai, M., B. Chen, and W. W. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci., 57, 23742396.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107, 4220, doi:10.1029/2001JD001005.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and H. R. Cho, 1991a: Parameterization of the vertical transport of momentum by cumulus clouds. Part I: Theory. J. Atmos. Sci., 48, 14831492.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and H. R. Cho, 1991b: Parameterization of the vertical transport of momentum by cumulus clouds. Part II: Application. J. Atmos. Sci., 48, 24482457.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Role of convective-scale momentum transport in climate simulation. J. Geophys. Res., 100, 14171426.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and X. Wu, 2003: Convective momentum transport and perturbation pressure field from a cloud-resolving model simulation. J. Atmos. Sci., 60, 11201139.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and M. Mu, 2005: Simulation of the Madden–Julian oscillation in the NCAR CCM3 using a revised Zhang–McFarlane convection parameterization scheme. J. Climate, 18, 40464064.

    • Search Google Scholar
    • Export Citation
  • Ziemiański, M. Z., W. W. Grabowski, and M. W. Moncrieff, 2005: Explicit convection over the western Pacific warm pool in the Community Atmospheric Model. J. Climate, 18, 14821502.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1955 1802 44
PDF Downloads 73 22 3