Are Anthropogenic Aerosols Responsible for the Northwest Australia Summer Rainfall Increase? A CMIP3 Perspective and Implications

Wenju Cai CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia

Search for other papers by Wenju Cai in
Current site
Google Scholar
PubMed
Close
,
Tim Cowan CSIRO Marine and Atmospheric Research, Aspendale, Victoria, and Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Tim Cowan in
Current site
Google Scholar
PubMed
Close
,
Arnold Sullivan CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia

Search for other papers by Arnold Sullivan in
Current site
Google Scholar
PubMed
Close
,
Joachim Ribbe Department of Physical and Biological Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia

Search for other papers by Joachim Ribbe in
Current site
Google Scholar
PubMed
Close
, and
Ge Shi Department of Physical and Biological Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia

Search for other papers by Ge Shi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Severe rainfall deficiencies have plagued southern and eastern Australian regions over the past decades, where the long-term rainfall is projected to decrease. By contrast, there has been an increase over northwest Australia (NWA) in austral summer, which, if it continues, could be an important future water resource. If increasing anthropogenic aerosols contribute to the observed increase in summer rainfall, then, as anthropogenic aerosols are projected to decrease, what will the likely impact over NWA be? This study uses output from 24 climate models submitted to phase 3 of the Coupled Model Intercomparison Project (CMIP3) with a total of 75 experiments to provide a multimodel perspective. The authors find that none of the ensemble averages, either with both the direct and indirect anthropogenic aerosol effect (10 models, 32 experiments) or with the direct effect only (14 models, 43 experiments), simulate the observed NWA rainfall increase. Given this, it follows that a projected rainfall reduction is not due to a projected decline in future aerosol concentrations. The authors show that the projected NWA rainfall reduction is associated with an unrealistic and overly strong NWA rainfall teleconnection with the El Niño–Southern Oscillation (ENSO). The unrealistic teleconnection is primarily caused by a model equatorial Pacific cold tongue that extends too far into the western Pacific, with the ascending branch of the Walker circulation situated too far west, exerting an influence on rainfall over NWA rather than over northeast Australia. Models with a greater present-day ENSO amplitude produce a greater reduction in the Walker circulation and hence a greater reduction in NWA rainfall in a warming climate. Hence, the cold bias and its impact represent a source of uncertainty for climate projections.

Corresponding author address: Wenju Cai, CSIRO Marine and Atmospheric Research, PMB 1, Aspendale VIC 3195, Australia. E-mail: wenju.cai@csiro.au

Abstract

Severe rainfall deficiencies have plagued southern and eastern Australian regions over the past decades, where the long-term rainfall is projected to decrease. By contrast, there has been an increase over northwest Australia (NWA) in austral summer, which, if it continues, could be an important future water resource. If increasing anthropogenic aerosols contribute to the observed increase in summer rainfall, then, as anthropogenic aerosols are projected to decrease, what will the likely impact over NWA be? This study uses output from 24 climate models submitted to phase 3 of the Coupled Model Intercomparison Project (CMIP3) with a total of 75 experiments to provide a multimodel perspective. The authors find that none of the ensemble averages, either with both the direct and indirect anthropogenic aerosol effect (10 models, 32 experiments) or with the direct effect only (14 models, 43 experiments), simulate the observed NWA rainfall increase. Given this, it follows that a projected rainfall reduction is not due to a projected decline in future aerosol concentrations. The authors show that the projected NWA rainfall reduction is associated with an unrealistic and overly strong NWA rainfall teleconnection with the El Niño–Southern Oscillation (ENSO). The unrealistic teleconnection is primarily caused by a model equatorial Pacific cold tongue that extends too far into the western Pacific, with the ascending branch of the Walker circulation situated too far west, exerting an influence on rainfall over NWA rather than over northeast Australia. Models with a greater present-day ENSO amplitude produce a greater reduction in the Walker circulation and hence a greater reduction in NWA rainfall in a warming climate. Hence, the cold bias and its impact represent a source of uncertainty for climate projections.

Corresponding author address: Wenju Cai, CSIRO Marine and Atmospheric Research, PMB 1, Aspendale VIC 3195, Australia. E-mail: wenju.cai@csiro.au
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lazante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean dipole on the Australian winter rainfall. Geophys. Res. Lett., 30, 1821, doi:10.1029/2003GL017926.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Berry, G., M. Reeder, and C. Jakob, 2011: Physical mechanisms regulating summertime rainfall over northwestern Australia. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2006: SAM and regional rainfall in IPCC AR4 models: Can anthropogenic forcing account for southwest Western Australian winter rainfall reduction? Geophys. Res. Lett., 33, L24708, doi:10.1029/2006GL028037.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2008: Dynamics of late autumn rainfall reduction over southeastern Australia. Geophys. Res. Lett., 35, L09708, doi:10.1029/2008GL033727.

    • Search Google Scholar
    • Export Citation
  • Cai, W., M. A. Collier, H. B. Gordon, and L. J. Waterman, 2003: Strong ENSO variability and a super-ENSO pair in the CSIRO Mark 3 coupled climate model. Mon. Wea. Rev., 131, 11891210.

    • Search Google Scholar
    • Export Citation
  • Cai, W., T. Cowan, M. Dix, L. Rotstayn, J. Ribbe, G. Shi, and S. Wijffels, 2007: Anthropogenic aerosol forcing and the structure of temperature trends in the southern Indian Ocean. Geophys. Res. Lett., 34, L14611, doi:10.1029/2007GL030380.

    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Sullivan, and T. Cowan, 2009a: Climate change contributes to more frequent consecutive positive Indian Ocean dipole events. Geophys. Res. Lett., 36, L23704, doi:10.1029/2009GL040163.

    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Sullivan, and T. Cowan, 2009b: Rainfall teleconnections with Indo-Pacific variability in the WCRP CMIP3 models. J. Climate, 22, 50465071.

    • Search Google Scholar
    • Export Citation
  • CSIRO, 2007: Climate change in Australia: Technical report 2007. CSIRO and Bureau of Meteorology Tech. Rep., 148 pp.

  • Davey, M. K., and Coauthors, 2002: STOIC: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18, 403420.

    • Search Google Scholar
    • Export Citation
  • Hope, P., B. Timbal, and R. Fawcett, 2009: Associations between rainfall variability in the southwest and southeast of Australia and their evolution through time. Int. J. Climatol., 30, 13601371, doi:10.1002/joc.1964.

    • Search Google Scholar
    • Export Citation
  • Jones, D., W. Wang, and R. Fawcett, 2009: High-quality spatial climate data-sets for Australia. Aust. Meteor. Oceanogr. J., 58, 233248.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932.

  • Lavery, B., G. Joung, and N. Nicholls, 1997: An extended high-quality historical rainfall dataset for Australia. Aust. Meteor. Mag., 46, 2738.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525.

  • Luffman, J. J., A. S. Taschetto, and M. H. England, 2010: Global and regional climate response to late twentieth-century warming over the Indian Ocean. J. Climate, 23, 16601674.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143.

  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., 2003: Pattern scaling: An examination of the accuracy of the technique for describing future climates. Climatic Change, 60, 217242.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 2009: Local and remote causes of the southern Australian autumn-winter rainfall decline, 1958–2007. Climate Dyn., 34, 835845, doi:10.1007/s00382-009-0527-6.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., and T. Yamagata, 2004: Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances. Geophys. Res. Lett., 31, L19306, doi:10.1029/2004GL020842.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and Coauthors, 2007: Have Australian rainfall and cloudiness increased due to the remote effects of Asian anthropogenic aerosols? J. Geophys. Res., 112, D09202, doi:10.1029/2006JD007712.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Shi, G., W. Cai, T. Cowan, J. Ribbe, L. Rotstayn, and M. Dix, 2008: Variability and trend of north west Australia rainfall: Observations and coupled climate modeling. J. Climate, 21, 29382959.

    • Search Google Scholar
    • Export Citation
  • Stone, D., A. J. Weaver, and R. J. Stouffer, 2001: Projection of climate change onto modes of atmospheric variability. J. Climate, 14, 35513565.

    • Search Google Scholar
    • Export Citation
  • Streets, D. G., 2007: Dissecting future aerosol emissions: Warming tendencies and mitigation opportunities. Climatic Change, 81, 313330.

    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., and M. H. England, 2008: An analysis of late 20th century trends in Australian rainfall. Int. J. Climatol., 29, 791807.

    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., R. J. Haarsma, A. Sen Gupta, C. C. Ummenhofer, K. J. Hill, and M. H. England, 2010: Australian monsoon variability driven by a Gill–Matsuno-type response to central west Pacific warming. J. Climate, 23, 47174736.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., A. Sen Gupta, M. J. Pook, and M. H. England, 2008: Anomalous rainfall over southwest Western Australia forced by Indian Ocean sea surface temperatures. J. Climate, 21, 51135134.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Wang, G., and H. H. Hendon, 2007: Sensitivity of Australian rainfall to inter–El Niño variations. J. Climate, 20, 42114226.

  • Zhang, H., 2009: Diagnosing Australia-Asian monsoon onset/retreat using large-scale wind and moisture indices. Climate Dyn., 35, 601618, doi:10.1007/s00382-009-0620-x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 854 584 41
PDF Downloads 162 65 1