Sulfate Aerosol Control of Tropical Atlantic Climate over the Twentieth Century

C.-Y. Chang Department of Geography and Center for Atmopsheric Sciences, University of California, Berkeley, Berkeley, California

Search for other papers by C.-Y. Chang in
Current site
Google Scholar
PubMed
Close
,
J. C. H. Chiang Department of Geography and Center for Atmopsheric Sciences, University of California, Berkeley, Berkeley, California

Search for other papers by J. C. H. Chiang in
Current site
Google Scholar
PubMed
Close
,
M. F. Wehner Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by M. F. Wehner in
Current site
Google Scholar
PubMed
Close
,
A. R. Friedman Department of Geography and Center for Atmospheric Sciences, University of California, Berkeley, Berkeley, California

Search for other papers by A. R. Friedman in
Current site
Google Scholar
PubMed
Close
, and
R. Ruedy NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by R. Ruedy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The tropical Atlantic interhemispheric gradient in sea surface temperature significantly influences the rainfall climate of the tropical Atlantic sector, including droughts over West Africa and Northeast Brazil. This gradient exhibits a secular trend from the beginning of the twentieth century until the 1980s, with stronger warming in the south relative to the north. This trend behavior is on top of a multidecadal variation associated with the Atlantic multidecadal oscillation. A similar long-term forced trend is found in a multimodel ensemble of forced twentieth-century climate simulations. Through examining the distribution of the trend slopes in the multimodel twentieth-century and preindustrial models, the authors conclude that the observed trend in the gradient is unlikely to arise purely from natural variations; this study suggests that at least half the observed trend is a forced response to twentieth-century climate forcings. Further analysis using twentieth-century single-forcing runs indicates that sulfate aerosol forcing is the predominant cause of the multimodel trend. The authors conclude that anthropogenic sulfate aerosol emissions, originating predominantly from the Northern Hemisphere, may have significantly altered the tropical Atlantic rainfall climate over the twentieth century.

Corresponding author address: C.-Y. Chang, University of California, Berkeley, 595 McCone, Berkeley, CA 94720-4740. E-mail: chingyee.chang@berkeley.edu

Abstract

The tropical Atlantic interhemispheric gradient in sea surface temperature significantly influences the rainfall climate of the tropical Atlantic sector, including droughts over West Africa and Northeast Brazil. This gradient exhibits a secular trend from the beginning of the twentieth century until the 1980s, with stronger warming in the south relative to the north. This trend behavior is on top of a multidecadal variation associated with the Atlantic multidecadal oscillation. A similar long-term forced trend is found in a multimodel ensemble of forced twentieth-century climate simulations. Through examining the distribution of the trend slopes in the multimodel twentieth-century and preindustrial models, the authors conclude that the observed trend in the gradient is unlikely to arise purely from natural variations; this study suggests that at least half the observed trend is a forced response to twentieth-century climate forcings. Further analysis using twentieth-century single-forcing runs indicates that sulfate aerosol forcing is the predominant cause of the multimodel trend. The authors conclude that anthropogenic sulfate aerosol emissions, originating predominantly from the Northern Hemisphere, may have significantly altered the tropical Atlantic rainfall climate over the twentieth century.

Corresponding author address: C.-Y. Chang, University of California, Berkeley, 595 McCone, Berkeley, CA 94720-4740. E-mail: chingyee.chang@berkeley.edu
Save
  • Anderson, T., and Coauthors, 2003: Climate forcing by aerosols—A hazy picture. Science, 300, 1103–1104.

  • Barnett, T. P., 1977: Principal time and space scales of Pacific trade wind fields. J. Atmos. Sci., 34, 221–236.

  • Barnett, T. P., and Coauthors, 2005: Detecting and attributing external influences on the climate system: A review of recent advances. J. Climate, 18, 1291–1314.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., and A. Giannini, 2006: Robust Sahel drying in response to late 20th century forcings. Geophys. Res. Lett., 33, L11706, doi:10.1029/2006GL026067.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Chang, P., and Coauthors, 2008: Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon. Nat. Geosci., 1, 444–448.

    • Search Google Scholar
    • Export Citation
  • Cheng, W., J. C. H. Chiang, and C. M. Bitz, 2007: Adjustment of the global climate to an abrupt slowdown of the Atlantic meridional overturning circulation. Ocean Circulation: Mechanisms and Impacts, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 295–314.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477–496.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., Y. Kushnir, and S. E. Zebiak, 2000: Interdecadal changes in eastern Pacific ITCZ variability and its influence on the Atlantic ITCZ. Geophys. Res. Lett., 27, 3687–3690.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., Y. Kushnir, and A. Giannini, 2002: Deconstructing Atlantic ITCZ variability: Influence of the local cross-equatorial SST gradient, and remote forcing from the eastern equatorial Pacific. J. Geophys. Res., 107, 4004, doi:10.1029/2000JD000307.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661–676.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and K. W. Dixon, 2006: Have anthropogenic aerosols delayed a greenhouse gas-induced weakening of the North Atlantic thermohaline circulation? Geophys. Res. Lett., 33, L02606, doi:10.1029/2005GL024980.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., D. J. Vimont, A. K. Heidinger, J. P. Kossin, and R. Bennartz, 2009: The role of aerosols in the evolution of tropical North Atlantic Ocean temperature anomalies. Science, 324, 778–781.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234, 755.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 1027–1030.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., and L. Greischar, 1993: Circulation mechanisms related to northeast Brazil rainfall anomalies. J. Geophys. Res., 98, 5093–5102.

    • Search Google Scholar
    • Export Citation
  • Haywood, J., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys., 38, 513–543.

    • Search Google Scholar
    • Export Citation
  • Huang, N., and Z. Wu, 2008: A review on Hilbert–Huang transform: Method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, doi:10.1029/2007RG000228.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 2812–2827.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., and Coauthors, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 567–18 589.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J., 2007: Twentieth-century climate model response and climate sensitivity. Geophys. Res. Lett., 34, L22710, doi:10.1029/2007GL031383.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, doi:10.1029/2006GL026242.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141–157.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715–737.

  • Mann, M. E., and K. A. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87, 233.

  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383–1394.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., and V. Ramaswamy, 2009: Nonlinear climate and hydrological responses to aerosol effects. J. Climate, 22, 1329–1339.

  • Moura, A. D., and J. Shukla, 1981: On the dynamics of droughts in northeast Brazil—Observations, theory, and numerical experiments with a general circulation model. J. Atmos. Sci., 38, 2653–2675.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S., 1993: An overview of African rainfall fluctuations of the last decade. J. Climate, 6, 1463–1466.

  • Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nat. Geosci., 1, 221–227.

  • Rasch, P., M. Barth, J. Kiehl, S. Schwartz, and C. Benkovitz, 2000: A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model, version 3. J. Geophys. Res., 105, 1367–1385.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002jd002670.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and J. E. Penner, 2001: Indirect aerosol forcing, quasi forcing, and climate response. J. Climate, 14, 2960–2975.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and U. Lohmann, 2002: Tropical rainfall trends and the indirect aerosol effect. J. Climate, 15, 2103–2116.

  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723–726.

    • Search Google Scholar
    • Export Citation
  • Slutz, R. J., S. J. Lubker, J. D. Hiscox, S. D. Woodruff, R. L. Jenne, D. H. Joseph, P. M. Steurer, and J. D. Elms, 1985: Comprehensive Ocean-Atmosphere Data Set; Release 1. NOAA Environmental Research Laboratories, Climate Research Program, 268 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, S. J., H. Pitcher, and T. M. L. Wigley, 2001: Global and regional anthropogenic sulfur dioxide emissions. Global Planet. Change, 29, 99–119.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296.

    • Search Google Scholar
    • Export Citation
  • Stern, D. I., 2006: Reversal of the trend in global anthropogenic sulfur emissions. Global Environ. Change, 16, 207–220.

  • Ting, M. F., Y. Kushnir, R. Seager, and C. H. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 1469–1481.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2004: A modeling study on the climate impacts of black carbon aerosols. J. Geophys. Res., 109, D03106, doi:10.1029/2003JD004084.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., A. Jones, D. L. Roberts, C. A. Senior, and M. J. Woodage, 2001: The response of the climate system to the indirect effects of anthropogenic sulfate aerosol. Climate Dyn., 17, 845–856.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., and N. E. Huang, 2009: Ensemble Empirical Mode Decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 1, 1–41.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., E. K. Schneider, B. P. Kirtman, E. S. Sarachik, N. E. Huang, and C. J. Tucker, 2008: The modulated annual cycle: An alternative reference frame for climate anomalies. Climate Dyn., 31, 823–841.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
  • Zhao, T. X. P., I. Laszlo, W. Guo, A. Heidinger, C. Cao, A. Jelenak, D. Tarpley, and J. Sullivan, 2008: Study of long-term trend in aerosol optical thickness observed from operational AVHRR satellite instrument. J. Geophys. Res., 113, D07201, doi:10.1029/2007JD009061.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2241 1065 52
PDF Downloads 497 82 8