The Madden–Julian Oscillation and the Relative Value of Deterministic Forecasts of Extreme Precipitation in the Contiguous United States

Charles Jones Earth Research Institute, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by Charles Jones in
Current site
Google Scholar
PubMed
Close
,
Leila M. V. Carvalho Earth Research Institute, and Department of Geography, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by Leila M. V. Carvalho in
Current site
Google Scholar
PubMed
Close
,
Jon Gottschalck NOAA/National Centers for Environmental Prediction/Climate Prediction Center, Camp Springs, Maryland

Search for other papers by Jon Gottschalck in
Current site
Google Scholar
PubMed
Close
, and
Wayne Higgins NOAA/National Centers for Environmental Prediction/Climate Prediction Center, Camp Springs, Maryland

Search for other papers by Wayne Higgins in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Madden–Julian oscillation (MJO) is the most prominent form of tropical intraseasonal variability that impacts weather and climate. Forecast skill of extreme precipitation in the contiguous United States (CONUS) during winter is higher when the MJO is active and has enhanced convection over the Western Hemisphere, Africa, and/or the western Indian Ocean. This study applies a simple decision model to examine the relationships between the MJO and the relative value of deterministic forecasts of extreme precipitation. Value in the forecasts is significantly higher and extends to longer leads (2 weeks) during active MJO.

Corresponding author address: Dr. Charles Jones, Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106. E-mail: cjones@eri.ucsb.edu

Abstract

The Madden–Julian oscillation (MJO) is the most prominent form of tropical intraseasonal variability that impacts weather and climate. Forecast skill of extreme precipitation in the contiguous United States (CONUS) during winter is higher when the MJO is active and has enhanced convection over the Western Hemisphere, Africa, and/or the western Indian Ocean. This study applies a simple decision model to examine the relationships between the MJO and the relative value of deterministic forecasts of extreme precipitation. Value in the forecasts is significantly higher and extends to longer leads (2 weeks) during active MJO.

Corresponding author address: Dr. Charles Jones, Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106. E-mail: cjones@eri.ucsb.edu
Save
  • Barlow, M., and D. Salstein, 2006: Summertime influence of the Madden–Julian Oscillation on daily rainfall over Mexico and Central America. Geophys. Res. Lett., 33, L21708, doi:10.1029/2006GL027738.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., M. Wheeler, B. Lyon, and H. Cullen, 2005: Modulation of daily precipitation over southwest Asia by the Madden–Julian oscillation. Mon. Wea. Rev., 133, 35793594.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., and G. A. Vecchi, 2003: The influence of the Madden–Julian oscillation on precipitation in Oregon and Washington. Wea. Forecasting, 18, 600613.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and B. Liebmann, 2004: The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 17, 88108.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., T. N. Palmer, F. Molteni, and K. Klinker, 1990: Tropical–extratropical interaction associated with the 30-60-day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., B. Liebmann, M. Newman, J. D. Glick, and J. E. Schemm, 2000: Medium-range forecast errors associated with active episodes of the Madden–Julian oscillation. Mon. Wea. Rev., 128, 6986.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., W. Shi, E. Yarosh, and R. Joyce, 2000a: Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center ATLAS 7, National Oceanic and Atmospheric Administration, 40 pp.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., J. K. E. Schemm, W. Shi, and A. Leetmaa, 2000b: Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 13, 793820.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., V. B. S. Silva, V. E. Kousky, and W. Shi, 2008: Comparison of daily precipitation statistics for the United States in observations and in the NCEP climate forecast system. J. Climate, 21, 59936014.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and D. B. Stephenson, 2003: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. Wiley, 240 pp.

  • Jones, C., 2000: Occurrence of extreme precipitation events in California and relationships with the Madden–Julian oscillation. J. Climate, 13, 35763587.

    • Search Google Scholar
    • Export Citation
  • Jones, C., and J.-K. E. Schemm, 2000: The influence of intraseasonal variations on medium-range weather forecasts over South America. Mon. Wea. Rev., 128, 486494.

    • Search Google Scholar
    • Export Citation
  • Jones, C., and L. M. V. Carvalho, 2002: Active and break phases in the South American Monsoon system. J. Climate, 15, 905914.

  • Jones, C., and L. M. V. Carvalho, 2006: Changes in the activity of the Madden–Julian oscillation during 1958–2004. J. Climate, 19, 63536370.

    • Search Google Scholar
    • Export Citation
  • Jones, C., and L. M. V. Carvalho, 2011: Stochastic simulations of the Madden-Julian oscillation activity. Climate Dyn., 36, 229246, doi:10.1007/s00382-009-0660-2.

    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, J. K. E. Schemm, and W. K. M. Lau, 2000: Prediction skill of the Madden and Julian oscillation in dynamical extended range forecasts. Climate Dyn., 16, 273289.

    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern, 2004a: The Madden–Julian oscillation and its impact on Northern Hemisphere weather predictability. Mon. Wea. Rev., 132, 14621471.

    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern, 2004b: Global occurrences of extreme precipitation and the Madden–Julian oscillation: Observations and predictability. J. Climate, 17, 45754589.

    • Search Google Scholar
    • Export Citation
  • Jones, C., J. Gottschalck, L. M. V. Carvalho, and W. R. Higgins, 2011: Influence of the Madden–Julian oscillation on forecasts of extreme precipitation in the contiguous United States. Mon. Wea. Rev., 139, 332350.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Katz, R. W., and A. H. Murphy, Eds., 1997: Economic Value of Weather and Climate Forecasts. Cambridge University Press, 222 pp.

  • Kiladis, G. N., and M. J. Revell, 2003: Modulation of Southern Hemisphere storm-track activity by the Madden–Julian oscillation. Preprints, Seventh Int. Conf. on Southern Hemisphere Meteorology and Oceanography, Wellington, New Zealand, Amer. Meteor. Soc., 2.6.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and D. E. Waliser, 2005: Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, 436 pp.

  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., G. N. Kiladis, C. S. Vera, A. C. Saulo, and L. M. V. Carvalho, 2004: Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. J. Climate, 17, 38293842.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40-50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837.

  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2000: Propagation mechanisms for the Madden–Julian Oscillation. Quart. J. Roy. Meteor. Soc., 126, 26372651.

  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2006: Predictability of weather and climate: From theory to practice. Predictability of Weather and Climate, T. N. Palmer and R. Hagedorn, Eds., Cambridge University Press, 702 pp.

    • Search Google Scholar
    • Export Citation
  • Pohl, B., and A. J. Matthews, 2007: Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. J. Climate, 20, 26592674.

    • Search Google Scholar
    • Export Citation
  • Richardson, D. V., 2003: Economic value and skill. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. T. Joliffe and D. B. Stephenson, Eds., Wiley, 240 pp.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19, 34833517.

  • Seo, K. H., J. K. E. Schemm, C. Jones, and S. Moorthi, 2005: Forecast skill of the tropical intraseasonal oscillation in the NCEP GFS dynamical extended range forecasts. Climate Dyn., 25, 265284.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and F. Molteni, 2010: Simulation of the Madden–Julian Oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855.

    • Search Google Scholar
    • Export Citation
  • Wang, W., S. Saha, H.-L. Pan, S. Nadiga, and G. White, 2005: Simulation of ENSO in the new NCEP Coupled Forecast System Model (CFS03). Mon. Wea. Rev., 133, 15741593.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K., and E. Berry, 2009: The tropical Madden–Julian oscillation and the global wind oscillation. Mon. Wea. Rev., 137, 16011614.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., H. H. Hendon, S. Cleland, H. Meinke, and A. Donald, 2009: Impacts of the Madden–Julian oscillation on Australian rainfall and circulation. J. Climate, 22, 14821498.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Vol. 91, Academic Press, 648 pp.

  • WMO, 2005: THORPEX international research implementation plan. World Meteorological Organization Rep. WMO/TD-1258, WWRP/THORPEX 4, 95 pp.

    • Search Google Scholar
    • Export Citation
  • Zhang, C. D., 2005: Madden–Julian oscillation. Rev. Geophys., 43, 136.

  • Zhu, Y., Z. Toth, R. Wobus, D. Richardson, and K. Mylne, 2002: The economic value of ensemble-based weather forecasts. Bull. Amer. Meteor. Soc., 83, 7383.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1787 1326 51
PDF Downloads 230 65 5