• Agosta, E., and P. Canziani, 2010: Interannual variations in the zonal asymmetry of the subpolar latitudes total ozone column during the austral spring. Geoacta, 35, 116.

    • Search Google Scholar
    • Export Citation
  • Barrucand, M., M. Rusticucci, and W. Vargas, 2008: Temperature extremes in the south of South America in relation to Atlantic Ocean surface temperature and Southern Hemisphere circulation. J. Geophys. Res., 113, D20111, doi:10.1029/2007JD009026.

    • Search Google Scholar
    • Export Citation
  • Brahmananda Rao, V., J. P. R. Fernandez, and S. H. Franchito, 2004: Quasi-stationary waves in the Southern Hemisphere during El Niño and La Niña events. Ann. Geophys., 22, 789806.

    • Search Google Scholar
    • Export Citation
  • Brunner, D., J. Staehelin, J. Maeder, I. Wohltmann, and G. E. Bodeker, 2006: Variability and trends in total and vertically resolved stratospheric ozone based on the CATO ozone data set. Atmos. Chem. Phys., 6, 49585008.

    • Search Google Scholar
    • Export Citation
  • Canziani, P. O., F. E. Malanca, and E. A. Agosta, 2008: Ozone and upper troposphere/lower stratosphere variability and change at southern midlatitudes 1980–2000: Decadal variations. J. Geophys. Res., 113, D20101, doi:10.1029/2007JD009303.

    • Search Google Scholar
    • Export Citation
  • Fioletov, V. E., and T. G. Shepherd, 2003: Seasonal persistence of midlatitude total ozone anomalies. Geophys. Res. Lett., 30, 1417, doi:10.1029/2002GL016739.

    • Search Google Scholar
    • Export Citation
  • Fusco, A. C., and M. L. Salby, 1999: Interannual variations of total ozone and their relationship to variations of planetary wave activity. J. Climate, 12, 16191629.

    • Search Google Scholar
    • Export Citation
  • Grytsai, A. V., Z. Grytsai, A. Evtushevsky, G. Milinevsky, and N. Leonov, 2005: Zonal wave numbers 1-5 in planetary waves from the TOMS total ozone at 65°S. Ann. Geophys., 23, 15651573.

    • Search Google Scholar
    • Export Citation
  • Grytsai, A. V., O. M. Evtushevsky, O. V. Agapitov, A. R. Klekociuk, and G. P. Milinevsky, 2007: Structure and long-term change in the zonal asymmetry in Antarctic total ozone during spring. Ann. Geophys., 25, 361374.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678.

    • Search Google Scholar
    • Export Citation
  • Hio, Y., and I. Hirota, 2002: Interannual variations of planetary waves in the Southern Hemisphere stratosphere. J. Meteor. Soc. Japan, 80, 10131027.

    • Search Google Scholar
    • Export Citation
  • Hirota, I., and Y. Sato, 1969: Periodic variation of the winter stratospheric circulation and intermittent vertical propagation of planetary waves. J. Meteor. Soc. Japan, 47, 390402.

    • Search Google Scholar
    • Export Citation
  • Hood, L. L., and B. E. Soukharev, 2005: Interannual variations of total ozone at northern midlatitudes correlated with stratospheric EP flux and potential vorticity. J. Atmos. Sci., 62, 37243740.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864.

  • Huth, R., and P. O. Canziani, 2003: Classification of hemispheric monthly mean stratospheric potential vorticity fields. Ann. Geophys., 21, 805817.

    • Search Google Scholar
    • Export Citation
  • Inatsu, M., and B. J. Hoskins, 2004: The zonal asymmetry of the Southern Hemisphere winter storm track. J. Climate, 17, 48824892.

  • Jiang, X., R.-L. Shia, and Y. L. Yung, 2008: Interannual variability and trends of extratropical ozone. Part II: Southern Hemisphere. J. Atmos. Sci., 65, 30303041.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K. G., and H. van Loon, 1999: The Stratosphere: Phenomena, History, and Relevance. Springer-Verlag, 180 pp.

  • Mäder, J. A., J. Staehelin, D. Brunner, W. A. Stahel, I. Wohltmann, and T. Peter, 2007: Statistical modeling of total ozone: Selection of appropriate explanatory variables. J. Geophys. Res., 112, D11108, doi:10.1029/2006JD007694.

    • Search Google Scholar
    • Export Citation
  • Malanca, F. E., P. O. Canziani, and G. Argüello, 2005: Trends evolution of ozone between 1980 and 2000 at midlatitudes over the Southern Hemisphere: Decadal differences in trends. J. Geophys. Res., 110, D05102, doi:10.1029/2004JD004977.

    • Search Google Scholar
    • Export Citation
  • Mo, K., and E. M. Rasmusson, 1993: The 200-mb climatological vorticity budget during 1986–1989 as revealed by NMC analyses. J. Climate, 6, 577594.

    • Search Google Scholar
    • Export Citation
  • Moser, B. K., and G. R. Stevens, 1992: Homogeneity of variance in the two-sample means test. Amer. Stat., 46, 1921.

  • Moser, B. K., G. R. Stevens, and C. L. Watts, 1989: The two-sample t test versus Satterwaite’s approximate F test. Commun. Stat. Theory Methods, 18, 39633975.

    • Search Google Scholar
    • Export Citation
  • Moustaoui, M., H. Teitelbaum, and F. P. J. Valero, 2003: Vertical displacements induced by quasi-stationary waves in the Southern Hemisphere stratosphere during spring. Mon. Wea. Rev., 131, 22792289.

    • Search Google Scholar
    • Export Citation
  • Nishii, K., and H. Nakamura, 2004: Lower-stratospheric Rossby wave trains in the Southern Hemisphere: A case study for late winter of 1997. Quart. J. Roy. Meteor. Soc., 130, 325345.

    • Search Google Scholar
    • Export Citation
  • Nishii, K., and H. Nakamura, 2005: Upward and downward injection of Rossby wave activity across the tropopause: A new aspect of the troposphere–stratosphere dynamical linkage. Quart. J. Roy. Meteor. Soc., 131, 545564.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On three-dimension propagation of stationary waves. J. Atmos. Sci., 42, 217229.

  • Plumb, R. A., 1989: On the seasonal cycle of stratospheric planetary waves. Pure Appl. Geophys., 130, 233242.

  • Qin, J., and W. A. Robinson, 1993: On the Rossby wave source and the steady linear response to tropical forcing. J. Atmos. Sci., 50, 18191823.

    • Search Google Scholar
    • Export Citation
  • Quintanar, A. I., and C. R. Mechoso, 1995: Quasi-stationary waves in the Southern Hemisphere. Part I: Observational data. J. Climate, 8, 26592672.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and R. Stolarski, 2002: Changes in column ozone correlated with EP flux. J. Meteor. Soc. Japan, 80, 849862.

  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251.

    • Search Google Scholar
    • Export Citation
  • Shiotani, M., and I. Hirota, 1985: Planetary wave-mean flow interaction in the stratosphere: A comparison between Northern and Southern Hemispheres. Quart. J. Roy. Meteor. Soc., 111, 309334.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627.

    • Search Google Scholar
    • Export Citation
  • Yuchechen, A., S. Bischoff, and P. Canziani, 2007: Variabilidad de perturbaciones espaciales y temporales de 500 hPa para sistemas tropicales y extratropicales de Sudamérica (500 hPa spatial and temporal perturbation variability for tropical and extratropical systems in South America). Geoacta, 32, 117.

    • Search Google Scholar
    • Export Citation
  • Ziemke, J. R., S. Chandra, R. D. McPeters, and P. A. Newman, 1997: Dynamical proxies of column ozone with applications to global trend models. J. Geophys. Res., 102, 61176129.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 62 32 1
PDF Downloads 28 13 1

Austral Spring Stratospheric and Tropospheric Circulation Interannual Variability

View More View Less
  • 1 Equipo Interdisciplinario para el Estudio de Procesos Atmosféricos en el Cambio Global, Pontificia Universidad Católica Argentina, and Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Restricted access

Abstract

The relationship between the October (spring) total ozone column (TOC) midlatitude zonal asymmetry over the Southern Hemisphere (SH) and the stratospheric quasi-stationary wave 1 (QSW1) interannual phase variability is analyzed. Once contributions to the TOC from known global predictors, estimated with a multiregression model, are removed, the residual TOC interannual variability is observed to be dynamically coupled to the stratospheric QSW1 phase behavior. The stratospheric QSW1 interannual phase variability, when classified according to specifically designed indices, yields different circulation patterns in the troposphere and stratosphere. High (upper quartile) index values correspond to a westward rotation of the midlatitude ozone trough and the stratospheric QSW1 phase, while low (lower quartile) index values represent their eastward-rotated state. These values can be associated with statistically different tropospheric circulation patterns: a predominantly single poleward tropospheric jet structure for high index values and a predominantly double-jet structure for low index values. For the latter, there is a higher daily probability of double-jet occurrence in the troposphere and a stronger stratospheric jet. These jet structures and their daily behavior are supported by significant synoptic-scale activity anomalies over SH mid- to high latitudes as well as changes in tropospheric quasi-stationary waves 1–3. The wave activity flux (W flux) diagnosis shows the contribution of active quasi-stationary waves in the observed tropospheric anomalies associated with high and low index values. With low index values, the quasi-stationary waves lead to a self-sustaining state of the stratospheric–tropospheric coupled system. With high index values, the overall mid- to high latitude circulation is associated with wave energy propagation from the tropical central Pacific into higher latitudes. Thus, during the austral spring, there are interactions between the troposphere and stratosphere, leading to the locally well-defined upward and downward propagation of wave anomalies, that is, significant upper troposphere (UT)–lower stratosphere (LS) interactions can occur within a spring month itself.

Corresponding author address: Eduardo Agosta, PEPACG, Edificio San José, Pontificia Universidad Católica Argentina, Av. Alicia Moreau de Justo 1600, 3er. piso, C1107AFF Buenos Aires, Argentina. E-mail: eduardo_agosta@uca.edu.ar

Abstract

The relationship between the October (spring) total ozone column (TOC) midlatitude zonal asymmetry over the Southern Hemisphere (SH) and the stratospheric quasi-stationary wave 1 (QSW1) interannual phase variability is analyzed. Once contributions to the TOC from known global predictors, estimated with a multiregression model, are removed, the residual TOC interannual variability is observed to be dynamically coupled to the stratospheric QSW1 phase behavior. The stratospheric QSW1 interannual phase variability, when classified according to specifically designed indices, yields different circulation patterns in the troposphere and stratosphere. High (upper quartile) index values correspond to a westward rotation of the midlatitude ozone trough and the stratospheric QSW1 phase, while low (lower quartile) index values represent their eastward-rotated state. These values can be associated with statistically different tropospheric circulation patterns: a predominantly single poleward tropospheric jet structure for high index values and a predominantly double-jet structure for low index values. For the latter, there is a higher daily probability of double-jet occurrence in the troposphere and a stronger stratospheric jet. These jet structures and their daily behavior are supported by significant synoptic-scale activity anomalies over SH mid- to high latitudes as well as changes in tropospheric quasi-stationary waves 1–3. The wave activity flux (W flux) diagnosis shows the contribution of active quasi-stationary waves in the observed tropospheric anomalies associated with high and low index values. With low index values, the quasi-stationary waves lead to a self-sustaining state of the stratospheric–tropospheric coupled system. With high index values, the overall mid- to high latitude circulation is associated with wave energy propagation from the tropical central Pacific into higher latitudes. Thus, during the austral spring, there are interactions between the troposphere and stratosphere, leading to the locally well-defined upward and downward propagation of wave anomalies, that is, significant upper troposphere (UT)–lower stratosphere (LS) interactions can occur within a spring month itself.

Corresponding author address: Eduardo Agosta, PEPACG, Edificio San José, Pontificia Universidad Católica Argentina, Av. Alicia Moreau de Justo 1600, 3er. piso, C1107AFF Buenos Aires, Argentina. E-mail: eduardo_agosta@uca.edu.ar
Save