• Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16 60116 615.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and M. Satoh, 2009: Simulating global clouds—Past, present, and future. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. J. Charlson, Eds., Strüngmann Forum Reports, Vol. 2, MIT Press, 469–486.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39, 21522158.

  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55, 32833298.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58, 978997.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., and S. Emori, Eds., 2004: K-1 coupled GCM (MIROC) description. CCSR, University of Tokyo Tech. Rep. 1, 34 pp.

  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Iga, S., H. Tomita, Y. Tsushima, and M. Satoh, 2007: Climatology of a nonhydrostatic global model with explicit cloud processes. Geophys. Res. Lett., 34, L22814, doi:10.1029/2007GL031048.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., 2002: Ice clouds in numerical weather prediction models: Progress, problems, and prospects. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 327–345.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett., 28, 36173620.

    • Search Google Scholar
    • Export Citation
  • Louis, J., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Mellor, G. L., and T. Yamada, 1974: A hierarch of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806.

    • Search Google Scholar
    • Export Citation
  • Miura, H., H. Tomita, T. Nasuno, S. Iga, M. Satoh, and T. Matsuno, 2005: A climate sensitivity test using a global cloud resolving model under an aqua planet condition. Geophys. Res. Lett., 32, L19717, doi:10.1029/2005GL023672.

    • Search Google Scholar
    • Export Citation
  • Miura, H., M. Satoh, H. Tomita, A. T. Noda, T. Nasuno, and S. Iga, 2007: A short-duration global cloud-resolving simulation with a realistic land and sea distribution. Geophys. Res. Lett., 34, L02804, doi:10.1029/2006GL027448.

    • Search Google Scholar
    • Export Citation
  • Miura, H., M. Satoh, and M. Katsumata, 2009: Spontaneous onset of a Madden-Julian oscillation event in a cloud-system-resolving simulation. Geophys. Res. Lett., 36, L13802, doi:10.1029/2009GL039056.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura, 2000: Modeling of the radiative process in an atmospheric general circulation model. Appl. Opt., 39, 48694878.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407.

    • Search Google Scholar
    • Export Citation
  • Nasuno, T., H. Miura, M. Satoh, A. T. Noda, and K. Oouchi, 2009: Multi-scale organization of convection in a global numerical simulation of the December 2006 MJO event using explicit moist processes. J. Meteor. Soc. Japan, 87, 335345.

    • Search Google Scholar
    • Export Citation
  • Noda, A., K. Oouchi, M. Satoh, H. Tomita, S. Iga, and Y. Tsushima, 2010: Importance of the subgrid-scale turbulent moist process: Cloud distribution in global cloud-resolving simulations. Atmos. Res., 96, 208217.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., M. F. Khairoutdinov, A. Arakawa, and W. W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564.

    • Search Google Scholar
    • Export Citation
  • Sarachik, E. S., 1978: Tropical sea surface temperature: An interactive one-dimensional atmosphere-ocean model. Dyn. Atmos. Oceans, 2, 455469.

    • Search Google Scholar
    • Export Citation
  • Sato, T., H. Miura, M. Satoh, Y. N. Takayabu, and Y. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., 1994: Hadley circulations in radiative–convective equilibrium in an axially symmetric atmosphere. J. Atmos. Sci., 51, 19471968.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., and Y.-Y. Hayashi, 1992: Simple cumulus models in one-dimensional radiative convective equilibrium problems. J. Atmos. Sci., 49, 12021220.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., and Y. Matsuda, 2009: Statistics on high-cloud areas and their sensitivities to cloud microphysics using single-cloud experiments. J. Atmos. Sci., 66, 26592677.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 34863514.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Inoue, and H. Miura, 2010: Evaluations of cloud properties of global and local cloud system resolving models using CALIPSO/CloudSat simulators. J. Geophys. Res., 115, D00H14, doi:10.1029/2009JD012247.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 1977: Axially symmetric steady-state models of the basic state for instability and climate studies. Part II: Nonlinear calculations. J. Atmos. Sci., 34, 280297.

    • Search Google Scholar
    • Export Citation
  • Sekiguchi, M., and T. Nakajima, 2008: A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J. Quant. Spectrosc. Radiat. Transfer, 109, 27792793.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., A. Noda, and N. Sato, 2002: Influence of the global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249272.

    • Search Google Scholar
    • Export Citation
  • Tanaka, K. K., T. Yamamoto, S. Watanabe, and K. Nakajima, 2008: Analytic model of upper tropospheric clouds in tropical Hadley cell. Earth Planets Space, 60, 219228.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2009: A multiscale modeling system: Developments, applications, and critical issues. Bull. Amer. Meteor. Soc., 90, 515534.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357400.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., H. Miura, S. Iga, T. Nasuno, and M. Satoh, 2005: A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys. Res. Lett., 32, L08805, doi:10.1029/2005GL022459.

    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., and Coauthors, 2006: Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multi-model study. Climate Dyn., 27, 113126, doi:10.1007/s00382-006-0127-7.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.

  • Waliser, D. E., and Coauthors, 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., and Coauthors, 2009: Comparisons of global cloud ice from MLS, CloudSat, and correlative data sets. J. Geophys. Res., 114, D00A24, doi:10.1029/2008JD009946.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., M. Khairoutdinov, and C. S. Bretherton, 2006: Climate sensitivity and cloud response of a GCM with a superparameterization. Geophys. Res. Lett., 33, L06714, doi:10.1029/2005GL025464.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 113 51 2
PDF Downloads 46 19 0

Sensitivity of Hadley Circulation to Physical Parameters and Resolution through Changing Upper-Tropospheric Ice Clouds Using a Global Cloud-System Resolving Model

View More View Less
  • 1 Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
  • | 2 Met Office Hadley Centre, Exeter, United Kingdom
  • | 3 Center for Climate System Research, University of Tokyo, Kashiwa, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
Restricted access

Abstract

The relationship between upper-tropospheric ice cloud properties and the Hadley circulation intensity is examined through parameter sensitivity studies of global cloud-system-resolving simulations with explicit cloud convection. Experiments under a perpetual July condition were performed by changing parameters in the boundary layer and cloud microphysics schemes, with a mesh size of approximately 14 km. One additional experiment with a mesh size of approximately 7 km was also conducted. These experiments produced a variety of upper-cloud coverage and outgoing longwave radiation (OLR) distributions. The authors found that, as the upper-cloud coverage increased, the total precipitation decreased and the intensity of the Hadley circulation weakened because of energy balance constraints that radiative cooling are balanced by adiabatic warming. Interestingly, the ice water path was not correlated with the upper ice-loud coverage or OLR, indicating that the spatial coverage of upper ice clouds, rather than the ice water content, was the key factor in the radiation budget.

Current affiliation: RIKEN Advanced Institute for Computational Science, Kobe, Japan.

Current affiliation: RIKEN Advanced Institute for Computational Science, Kobe, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan.

Current affiliation: Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa-shi, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan.

Corresponding author address: Shin-ichi Iga, RIKEN Advanced Institute for Computational Science 7-1-26, Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan. E-mail: iga@riken.jp

Abstract

The relationship between upper-tropospheric ice cloud properties and the Hadley circulation intensity is examined through parameter sensitivity studies of global cloud-system-resolving simulations with explicit cloud convection. Experiments under a perpetual July condition were performed by changing parameters in the boundary layer and cloud microphysics schemes, with a mesh size of approximately 14 km. One additional experiment with a mesh size of approximately 7 km was also conducted. These experiments produced a variety of upper-cloud coverage and outgoing longwave radiation (OLR) distributions. The authors found that, as the upper-cloud coverage increased, the total precipitation decreased and the intensity of the Hadley circulation weakened because of energy balance constraints that radiative cooling are balanced by adiabatic warming. Interestingly, the ice water path was not correlated with the upper ice-loud coverage or OLR, indicating that the spatial coverage of upper ice clouds, rather than the ice water content, was the key factor in the radiation budget.

Current affiliation: RIKEN Advanced Institute for Computational Science, Kobe, Japan.

Current affiliation: RIKEN Advanced Institute for Computational Science, Kobe, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan.

Current affiliation: Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa-shi, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan.

Corresponding author address: Shin-ichi Iga, RIKEN Advanced Institute for Computational Science 7-1-26, Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan. E-mail: iga@riken.jp
Save