• Clarke, A., and V. Kapustin, 2010: Hemispheric aerosol vertical profiles: Anthropogenic impacts on optical depth and cloud nuclei. Science, 329, 1488.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thompson, R. Porys, and D. C. Rogers, 2003: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100, 14 65514 660.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., 2002: The effect of deep, tropical convection on the tropical tropopause layer. J. Geophys. Res., 107, 4033, doi:10.1029/2001JD000511.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025.

  • Fu, R., and Coauthors, 2006: Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc. Natl. Acad. Sci. USA, 103, 56645669.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and P. H. Haynes, 2005: Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res., 110, D24108, doi:10.1029/2005JD006019.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., M. Bonazzola, P. H. Haynes, and T. Peter, 2005: Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res., 110, D08107, doi:10.1029/2004JD005516.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and A. Gettelman, 2001: Horizontal transport and the dehydration of the stratosphere. Geophys. Res. Lett., 28, 27992802.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., A. S. Ackerman, and J. A. Smith, 2007: Can overshooting convection dehydrate the tropical tropopause layer? J. Geophys. Res., 112, D11209, doi:10.1029/2006JD007943.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., N. J. Livesey, H. Su, L. Neary, J. C. McConnell, and N. A. Richards, 2007: Connecting surface emissions, convective uplifting, and long-range transport of carbon monoxide in the upper troposphere: New observations from the Aura Microwave Limb Sounder. Geophys. Res. Lett., 34, L18812, doi:10.1029/2007GL030638.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., H. Su, M. Schoeberl, S. T. Massie, P. Colarco, S. Platnick, and N. Livesey, 2008: Clean and polluted clouds: relationships among pollution, ice cloud and precipitation in South America. Geophys. Res. Lett., 35, L14804, doi:10.1029/2008GL034631.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., H. Su, S. T. Massie, P. Colarco, M. Schoeberl, and S. Platnick, 2009: Aerosol-CO relationship and aerosol effect on ice cloud particle size: Analyses from Aura MLS and Aqua MODIS observations. J. Geophys. Res., 114, D20207, doi:10.1029/2009JD012421.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., and Coauthors, 2011: Influence of convection and aerosol pollution on ice cloud particle effective radius. Atmos. Chem. Phys., 11, 457463, doi:10.5194/acp-11-457-2011.

    • Search Google Scholar
    • Export Citation
  • Kuhlmann, J., and J. Quaas, 2010: How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data. Atmos. Chem. Phys., 10, 46734688.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and K. M. Kim, 2006: Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett., 33, L21810, doi:10.1029/2006GL027546.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., M. K. Kim, and K. M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855864.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and J. H. Jiang, 2010: Touring the atmosphere aboard the A-Train. Phys. Today, 63, 3641.

  • Li, Q. B., and Coauthors, 2005: Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations. Geophys. Res. Lett., 32, L14826, doi:10.1029/2005GL022762.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and J. E. Penner, 2005: Ice nucleation parameterization for global models. Meteor. Z., 14, 499514.

  • Liu, X., J. E. Penner, and M. Wang, 2009: Influence of anthropogenic sulfate and black carbon on upper tropospheric clouds in the NCAR CAM3 model coupled to the IMPACT global aerosol model. J. Geophys. Res., 114, D03204, doi:10.1029/2008JD010492.

    • Search Google Scholar
    • Export Citation
  • Livesey, N. J., W. V. Snyder, W. G. Read, and P. A. Wagner, 2006: Retrieval algorithms for the EOS Microwave Limb Sounder (MLS) instrument. IEEE Trans. Geosci. Remote Sens., 44, 11441155.

    • Search Google Scholar
    • Export Citation
  • Livesey, N. J., and Coauthors, 2008: Validation of Aura Microwave Limb Sounder O3 and CO observations in the upper troposphere and lower stratosphere. J. Geophys. Res., 113, D15S02, doi:10.1029/2007JD008805.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., and S. Gould-Stewart, 1981: A stratospheric fountain? J. Atmos. Sci., 38, 27892796.

  • Notholt, J., and Coauthors, 2005: Influence of tropospheric SO2 emissions on particle formation and the stratospheric humidity. Geophys. Res. Lett., 32, L07810, doi:10.1029/2004GL022159.

    • Search Google Scholar
    • Export Citation
  • Park, M., W. J. Randel, L. K. Emmons, and N. J. Livesey, 2009: Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART). J. Geophys. Res., 114, D08303, doi:10.1029/2008JD010621.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., 2000: Vertical photon transport in cloud remote sensing problems. J. Geophys. Res., 105, 22 91922 935.

  • Randel, W. J., F. Wu, H. Vomel, G. E. Nedoluha, and P. Forster, 2006: Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer–Dobson circulation. J. Geophys. Res., 111, D12312, doi:10.1029/2005JD006744.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., M. Park, L. Emmons, D. Kinnison, P. Bernath, K. A. Walker, C. Boone, and H. Pumphrey, 2010: Asian monsoon transport of pollution to the stratosphere. Science, 328, 611613.

    • Search Google Scholar
    • Export Citation
  • Read, W. G., D. L. Wu, J. W. Waters, and H. C. Pumphrey, 2004: Dehydration in the tropical tropopause layer: Implications from UARS MLS. J. Geophys. Res., 109, D06110, doi:10.1029/2003JD004056.

    • Search Google Scholar
    • Export Citation
  • Read, W. G., and Coauthors, 2007: Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation. J. Geophys. Res., 112, D24S35, doi:10.1029/2007JD008752.

    • Search Google Scholar
    • Export Citation
  • Rosenfield, J., D. Considine, M. Schoeberl, and E. Browell, 1998: The impact of subvisible cirrus clouds near the tropical tropopause on stratospheric water vapor. Geophys. Res. Lett., 25, 18831886.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. J., and Coauthors, 2008: Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J. Geophys. Res., 113, D15S11, doi:10.1029/2007JD008783.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 2002a: A microphysical connection among biomass burning, cumulus clouds, and stratospheric moisture. Science, 295, 12721275.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 2002b: Aerosols and ice particle size in tropical cumulonimbus. J. Climate, 15, 10511063.

  • Sherwood, S. C., and A. E. Dessler, 2001: A model for transport across the tropical tropopause. J. Atmos. Sci., 58, 765779.

  • Solomon, S., K. Rosenlof, R. Portmann, J. Daniel, S. Davis, T. Sanford, and G. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 303, 12191223.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., S. Eckhardt, C. Forster, P. James, and N. Spichtinger, 2002: On the pathways and timescales of intercontinental air pollution transport. J. Geophys. Res., 107, 4684, doi:10.1029/2001JD001396.

    • Search Google Scholar
    • Export Citation
  • Su, H., W. G. Read, J. H. Jiang, J. W. Waters, D. L. Wu, and E. J. Fetzer, 2006: Enhanced positive water vapor feedback associated with tropical deep convection: New evidence from Aura MLS. Geophys. Res. Lett., 33, L05709, doi:10.1029/2005GL025505.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., and Coauthors, 2008: Validation of the Aura MLS cloud Ice Water Content (IWC) measurements. J. Geophys. Res., 113, doi:10.1029/2007JD008931.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., S. Platnick, P. Yang, A. K. Heidinger, and J. Comstock, 2010: Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice clouds. J. Geophys. Res., 115, D17203, doi:10.1029/2010JD013835.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 190 88 7
PDF Downloads 122 61 2

Observed Increase of TTL Temperature and Water Vapor in Polluted Clouds over Asia

View More View Less
  • 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 2 Pacific Northwest National Laboratory, Richland, Washington
  • | 3 Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan
  • | 4 National Center for Atmospheric Research, Boulder, Colorado
  • | 5 NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

Satellite observations are analyzed to examine the correlations between aerosols and the tropical tropopause layer (TTL) temperature and water vapor. This study focuses on two regions, both of which are important pathways for the mass transport from the troposphere to the stratosphere and over which Asian pollution prevails: South and East Asia during boreal summer and the Maritime Continent during boreal winter. Using the upper-tropospheric carbon monoxide measurements from the Aura Microwave Limb Sounder as a proxy of aerosols to classify ice clouds as polluted or clean, the authors find that polluted clouds have a smaller ice effective radius and a higher temperature and specific humidity near the tropopause than clean clouds. The increase in water vapor appears to be related to the increase in temperature, as a result of increased aerosols. Meteorological differences between the clouds cannot explain the differences in temperature and water vapor for the polluted and clean clouds. The authors hypothesize that aerosol semidirect radiative heating and/or changes in cirrus radiative heating, resulting from aerosol microphysical effects on clouds, may contribute to the increased TTL temperature and thus increased water vapor in the polluted clouds.

Retired.

Current affiliation: Science and Technology Corporation, Lanham, Maryland.

Corresponding author address: Hui Su, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109. E-mail: hui.su@jpl.nasa.gov

Abstract

Satellite observations are analyzed to examine the correlations between aerosols and the tropical tropopause layer (TTL) temperature and water vapor. This study focuses on two regions, both of which are important pathways for the mass transport from the troposphere to the stratosphere and over which Asian pollution prevails: South and East Asia during boreal summer and the Maritime Continent during boreal winter. Using the upper-tropospheric carbon monoxide measurements from the Aura Microwave Limb Sounder as a proxy of aerosols to classify ice clouds as polluted or clean, the authors find that polluted clouds have a smaller ice effective radius and a higher temperature and specific humidity near the tropopause than clean clouds. The increase in water vapor appears to be related to the increase in temperature, as a result of increased aerosols. Meteorological differences between the clouds cannot explain the differences in temperature and water vapor for the polluted and clean clouds. The authors hypothesize that aerosol semidirect radiative heating and/or changes in cirrus radiative heating, resulting from aerosol microphysical effects on clouds, may contribute to the increased TTL temperature and thus increased water vapor in the polluted clouds.

Retired.

Current affiliation: Science and Technology Corporation, Lanham, Maryland.

Corresponding author address: Hui Su, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109. E-mail: hui.su@jpl.nasa.gov
Save