• Alder, J. R., S. W. Hostetler, D. Pollard, and A. Schmittner, 2010: Evaluation of a present-day climate simulation with a new coupled atmosphere-ocean model GENMOM. Geosci. Model Dev. Discuss., 16971735.

    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., R. A. Locarni, T. P. Boyer, A. V. Mishonov, and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, 182 pp.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and M. Lazare, 1988: Some results concerning the effect of horizontal resolution and gravity–wave drag on simulated climate. J. Climate, 1, 789806.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., and D. R. Peteet, D. Rind, 1985: Does the ocean-atmosphere system have more than one stable model of operation? Nature, 315, 2126.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., G. Danabasoglu, N. Nakashiki, Y. Yoshida, D. H. Kim, J. Tsutsui, and S. C. Doney, 2006: Response of the North Atlantic thermohaline circulation and ventilation to increasing carbon dioxide in CCSM3. J. Climate, 19, 23822397.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., C. L. Parkinson, and K. Y. Vinnikov, 2003: 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys. Res. Lett., 30, 1970, doi:10.1029/2003GL018031.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. R. Zeng, 2008: Simulated impact of altered Southern Hemisphere winds on the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35, L20708, doi:10.1029/2008GL035166.

    • Search Google Scholar
    • Export Citation
  • Dietrich, G., and K. Kalle, 1957: Allgemeine Meereskunde: Eine Einführung in die Ozeanographie. Gebruder Borntraeger, 492 pp.

  • Döscher, R., and R. Redler, 1997: The relative importance of northern overflow and subpolar deep convection for the North Atlantic thermohaline circulation. J. Phys. Oceanogr., 27, 18941902.

    • Search Google Scholar
    • Export Citation
  • Egger, J., 1985: Slope winds and the axisymmetric circulation over Antarctica. J. Atmos. Sci., 42, 18591867.

  • Fraedrich, K., H. Jansen, E. Kirk, U. Luksch, and F. Lunkeit, 2005a: The Planet Simulator: Towards a user friendly model. Meteor. Z., 14, 299304.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., H. Jansen, E. Kirk, and F. Lunkeit, 2005b: The Planet Simulator: Green planet and desert world. Meteor. Z., 14, 305314.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gillett, N. P., and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302, 273275.

  • Goosse, H., F. M. Selten, R. J. Haarsma, and J. D. Opsteegh, 2002: A mechanism of decadal variability of the sea-ice volume in the Northern Hemisphere. Climate Dyn., 19, 6183.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., O. A. Saenko, and A. J. Weaver, 2003: The role of the Atlantic freshwater balance in the hysteresis of the meridional overturning circulation. Climate Dyn., 21, 707717.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 411 pp.

  • Held, I. M., and P. J. Phillipps, 1993: Sensitivity of the eddy momentum flux to meridional resolution in atmospheric GCMs. J. Climate, 6, 499507.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520.

    • Search Google Scholar
    • Export Citation
  • James, I. N., 1989: The Antarctic drainage flow: Implications for hemispheric flow on the Southern Hemisphere. Antarct. Sci., 1, 279290.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kitoh, A., 2002: Effects of large-scale mountains on surface climate—A coupled ocean-atmosphere general circulation model study. J. Meteor. Soc. Japan., 80, 11651181.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., 2004: Effects of mountain uplift on East Asian summer climate investigated by a coupled atmosphere–ocean GCM. J. Climate, 17, 783802.

    • Search Google Scholar
    • Export Citation
  • Krebs, U., and A. Timmermann, 2007: Tropical air–sea interactions accelerate the recovery of the Atlantic meridional overturning circulation after a major shutdown. J. Climate, 20, 49404956.

    • Search Google Scholar
    • Export Citation
  • Lenton, T. M., and Coauthors, 2007: Effects of atmospheric dynamics and ocean resolution on bi-stability of the thermohaline circulation examined using the Grid Enabled Integrated Earth system modelling (GENIE) framework. Climate Dyn., 29, 591613.

    • Search Google Scholar
    • Export Citation
  • Locarni, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, 182 pp.

    • Search Google Scholar
    • Export Citation
  • Lohmann, G., 2003: Atmospheric and oceanic freshwater transport during weak Atlantic overturning circulation. Tellus, 55, 438449.

  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562.

  • Manabe, S., and T. B. Terpstra, 1974: The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci., 31, 342.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1994: Multiple-century response of a coupled ocean–atmosphere model to an increase of atmospheric carbon dioxide. J. Climate, 7, 523.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354.

    • Search Google Scholar
    • Export Citation
  • McDermott, D. A., 1996: The regulation of northern overturning by Southern Hemisphere winds. J. Phys. Oceanogr., 26, 12341255.

  • Menviel, L., A. Timmermann, A. Mouchet, and O. Timm, 2008: Meridional reorganizations of marine and terrestrial productivity during Heinrich events. Paleoceanography, 23, PA1203, doi:10.1029/2007PA001445.

    • Search Google Scholar
    • Export Citation
  • Okazaki, Y., A. Timmermann, L. Menviel, N. Harada, A. Abe-Ouchi, M. O. Chikamoto, A. Mouchet, and H. Asahi, 2010: Deepwater formation in the North Pacific during the last glacial termination. Science, 329, 200204.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., P. Pettré, and G. Wendler, 1993: The influence of large-scale forcing on the katabatic wind regime at Adélie Land, Antarctica. Meteor. Atmos. Phys., 51, 165176.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. Springer, 520 pp.

  • Rahmstorf, S., 1996: On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dyn., 12, 799811.

  • Rahmstorf, S., and M. H. England, 1997: Influence of Southern Hemisphere winds on North Atlantic deep water flow. J. Phys. Oceanogr., 27, 20402054.

    • Search Google Scholar
    • Export Citation
  • Russell, J. L., R. J. Stouffer, and K. W. Dixon, 2006: Intercomparison of the Southern Ocean circulations in IPCC coupled model control simulations. J. Climate, 19, 45604575.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., A. J. Weaver, and J. M. Gregory, 2003a: On the link between the two modes of the ocean thermohaline circulation and the formation of global-scale water masses. J. Climate, 16, 27972801.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., A. J. Weaver, and A. Schmittner, 2003b: Atlantic deep circulation controlled by freshening in the Southern Ocean. Geophys. Res. Lett., 30, 1754, doi:10.1029/2003GL017681.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., N. Gruber, M. A. Brzezinski, and J. P. Dunne, 2004: High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427, 5660.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., and E. D. Galbraith, 2008: Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature, 456, 373376.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., M. Latif, and B. Schneider, 2005: Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett., 32, L23710, doi:10.1029/2005GL024368.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., A. Oschlies, H. D. Matthews, and E. D. Galbraith, 2008: Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Global Biogeochem. Cycles, GB1013, doi:10.1029/2007GB002953.

    • Search Google Scholar
    • Export Citation
  • Schweckendiek, U., and J. Willebrand, 2005: Mechanisms affecting the overturning response in global warming simulations. J. Climate, 18, 49254936.

    • Search Google Scholar
    • Export Citation
  • Sijp, W. P., and M. H. England, 2009: Southern Hemisphere westerly wind control over the ocean’s thermohaline circulation. J. Climate, 22, 12771286.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and D. G. Wright, 1991: Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature, 351, 729732.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2008: Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Prog. Oceanogr., 78, 257303.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899.

  • Tibaldi, S., T. N. Palmer, and Č. Branković, U. Cubasch, 1990: Extended-range predictions with ECMWF models: Influence of horizontal resolution on systematic error and forecast skill. Quart. J. Roy. Meteor. Soc., 116, 835866.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I, 42, 477500.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., 1983: Why is no deep-water formed in the North Pacific? J. Mar. Res., 41, 327347.

  • Weaver, A. J., C. M. Bitz, A. F. Fanning, and M. M. Holland, 1999: Thermohaline circulation: High-latitude phenomena and the difference between the Pacific and Atlantic. Annu. Rev. Earth Planet. Sci., 27, 231285.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and Coauthors, 2001: The UVic Earth System Climate Model: Model description, climatology, and applications to past, present and future climates. Atmos.–Ocean, 39, 361428.

    • Search Google Scholar
    • Export Citation
  • Weyl, P., 1968: The role of the oceans in climate change: A theory of the ice ages. Causes of Climatic Change, Meteor. Monogr., No. 30, Amer. Meteor. Soc., 37–62.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2006: Estimated decadal changes in the North Atlantic meridional overturning circulation and heat flux 1993–2004. J. Phys. Oceanogr., 36, 20122024.

    • Search Google Scholar
    • Export Citation
  • Xie, P. P., J. E. Janowiak, P. A. Arkin, R. Adler, A. Gruber, R. Ferraro, G. J. Huffman, and S. Curtis, 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16, 21972214.

    • Search Google Scholar
    • Export Citation
  • Zaucker, F., and W. S. Broecker, 1992: The influence of atmospheric moisture transport on the fresh water balance of the Atlantic drainage basin: General circulation model simulations and observations. J. Geophys. Res., 97, 27652773.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 613 340 15
PDF Downloads 427 240 13

Effects of Mountains and Ice Sheets on Global Ocean Circulation

View More View Less
  • 1 Oregon State University, Corvallis, Oregon
  • | 2 Universität Hamburg, Hamburg, Germany
Restricted access

Abstract

The impact of mountains and ice sheets on the large-scale circulation of the world’s oceans is investigated in a series of simulations with a new coupled ocean–atmosphere model [Oregon State University–University of Victoria model (OSUVic)], in which the height of orography is scaled from 1.5 times the actual height (at T42 resolution) to 0 (no mountains). The results suggest that the effects of mountains and ice sheets on the buoyancy and momentum transfer from the atmosphere to the surface ocean determine the present pattern of deep ocean circulation. Higher mountains reduce water vapor transport from the Pacific and Indian Oceans into the Atlantic Ocean and contribute to increased (decreased) salinities and enhanced (reduced) deep-water formation and meridional overturning circulation in the Atlantic (Pacific). Orographic effects also lead to the observed interhemispheric asymmetry of midlatitude zonal wind stress. The presence of the Antarctic ice sheet cools winter air temperatures by more than 20°C directly above the ice sheet and sets up a polar meridional overturning cell in the atmosphere. The resulting increased meridional temperature gradient strengthens midlatitude westerlies by ~25% and shifts them poleward by ~10°. This leads to enhanced and poleward-shifted upwelling of deep waters in the Southern Ocean, a stronger Antarctic Circumpolar Current, increased poleward atmospheric moisture transport, and more advection of high-salinity Indian Ocean water into the South Atlantic. Thus, it is the current configuration of mountains and ice sheets on earth that determines the difference in deep-water formation between the Atlantic and the Pacific.

Supplemental information related to this paper is available at the Journals Online Web site: http://dx.doi.org/10.1175/2010JCLI3982.s1.

Current affiliation: School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom.

Corresponding author address: Andreas Schmittner, College of Oceanic and Atmospheric Sciences, Oregon State University, 104 COAS Admin. Bldg., Corvallis, OR 97331-5503. E-mail: aschmitt@coas.oregonstate.edu

Abstract

The impact of mountains and ice sheets on the large-scale circulation of the world’s oceans is investigated in a series of simulations with a new coupled ocean–atmosphere model [Oregon State University–University of Victoria model (OSUVic)], in which the height of orography is scaled from 1.5 times the actual height (at T42 resolution) to 0 (no mountains). The results suggest that the effects of mountains and ice sheets on the buoyancy and momentum transfer from the atmosphere to the surface ocean determine the present pattern of deep ocean circulation. Higher mountains reduce water vapor transport from the Pacific and Indian Oceans into the Atlantic Ocean and contribute to increased (decreased) salinities and enhanced (reduced) deep-water formation and meridional overturning circulation in the Atlantic (Pacific). Orographic effects also lead to the observed interhemispheric asymmetry of midlatitude zonal wind stress. The presence of the Antarctic ice sheet cools winter air temperatures by more than 20°C directly above the ice sheet and sets up a polar meridional overturning cell in the atmosphere. The resulting increased meridional temperature gradient strengthens midlatitude westerlies by ~25% and shifts them poleward by ~10°. This leads to enhanced and poleward-shifted upwelling of deep waters in the Southern Ocean, a stronger Antarctic Circumpolar Current, increased poleward atmospheric moisture transport, and more advection of high-salinity Indian Ocean water into the South Atlantic. Thus, it is the current configuration of mountains and ice sheets on earth that determines the difference in deep-water formation between the Atlantic and the Pacific.

Supplemental information related to this paper is available at the Journals Online Web site: http://dx.doi.org/10.1175/2010JCLI3982.s1.

Current affiliation: School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom.

Corresponding author address: Andreas Schmittner, College of Oceanic and Atmospheric Sciences, Oregon State University, 104 COAS Admin. Bldg., Corvallis, OR 97331-5503. E-mail: aschmitt@coas.oregonstate.edu
Save