• Berger, A., and M. F. Loutre, 1991: Insolation values for the climate of the last 10 million years. Quat. Sci. Rev., 10, 297317.

  • Bolton, D., 1980: The computation of equivalent potential temperature. J. Climate, 108, 10461053.

  • Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum— Part 2: Feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate Past, 3, 279296.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., and S. Manabe, 1987: The influence of continental ice, CO2, and land albedo on the climate of the Last Glacial Maximum. Climate Dyn., 1, 8799.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496.

    • Search Google Scholar
    • Export Citation
  • Cleaveland, C. L., and T. D. Herbert, 2007: Coherent obliquity band and heterogeneous precession band responses in early Pleistocene tropical sea surface temperatures. Paleoceanography, 22, PA2216, doi:10.1029/2006PA001370.

    • Search Google Scholar
    • Export Citation
  • Clement, C. A., R. Burgman, and J. R. Norris, 2009: Observational and model evidence for positive low-level cloud feedbacks. Science, 325, 460464.

    • Search Google Scholar
    • Export Citation
  • de Garidel-Thoron, T., Y. Rosenthal, F. Bassinot, and L. Beaufort, 2005: Stable sea surface temperature in the western Pacific warm pool over the past 1.75 million years. Nature, 433, 294298.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P., A. Clement, G. Vecchi, B. Soden, B. Kirtman, and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 48734892.

    • Search Google Scholar
    • Export Citation
  • Dwyer, G. S., T. M. Cronin, P. A. Baker, M. E. Raymo, J. S. Buzas, and T. Correge, 1995: North Atlantic deepwater temperature change during late Pliocene and late Quaternary climatic cycles. Science, 270, 13471351.

    • Search Google Scholar
    • Export Citation
  • GFDL Global Atmospheric Model Development Team, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19, 675697.

    • Search Google Scholar
    • Export Citation
  • Hartmann, L. D., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on earth’s energy balance: Global analysis. J. Climate, 5, 12811304.

    • Search Google Scholar
    • Export Citation
  • Herbert, T. D., 2003: Alkenone paleotemperature determinations. Treatise Geochem., 6, 391432.

  • Herweijer, C., R. Seager, M. Winton, and A. Clement, 2005: Why ocean heat transport warms the global mean climate. Tellus, 57A, 662675.

    • Search Google Scholar
    • Export Citation
  • Hewitt, C. D., and J. F. B. Mitchell, 1998: A fully coupled GCM simulation of the climate of the mid-Holocene. Geophys. Res. Lett., 25, 361364.

    • Search Google Scholar
    • Export Citation
  • Huybers, P., 2006: Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science, 313, 508511.

  • Jouzel, J., and Coauthors, 2007: Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317, 793796.

    • Search Google Scholar
    • Export Citation
  • Khodri, M., M. Kageyama, and D. M. Roche, 2009: Sensitivity of South America tropical climate to Last Glacial Maximum boundary conditions: Focus on teleconnections with tropics and extratropics. Dev. Paleoenviron. Res., 14, 231238.

    • Search Google Scholar
    • Export Citation
  • Klein, A. S., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606.

  • Lawrence, K. T., Z. Liu, and T. D. Herbert, 2006: Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science, 312, 7983.

    • Search Google Scholar
    • Export Citation
  • Lawrence, K. T., S. Sosdian, H. E. White, and Y. Rosenthal, 2010: North Atlantic climate evolution through the Plio-Pleistocene climate transitions. Earth Planet. Sci. Lett., 300, 329342.

    • Search Google Scholar
    • Export Citation
  • Lea, D. W., 2003: Elemental and isotopic proxies of past ocean temperatures. Treatise Geochem., 6, 365390.

  • Lee, S.-Y., and C. J. Poulsen, 2005: Tropical Pacific climate response to obliquity forcing in the Pleistocene. Paleoceanography, 20, PA4010, doi:10.1029/2005PA001161.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307.

  • Lisiecki, E. L., and M. E. Raymo, 2005: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and T. D. Herbert, 2004: High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch. Nature, 427, 720723.

    • Search Google Scholar
    • Export Citation
  • Ma, C.-C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean–atmosphere GCM study. J. Climate, 9, 16351645.

    • Search Google Scholar
    • Export Citation
  • Medina-Elizalde, M., and D. W. Lea, 2005: The mid-Pleistocene transition in the tropical Pacific. Science, 310, 10091012.

  • Milly, P. C. D., and A. B. Shmakin, 2002: Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model. J. Hydrometeor., 3, 283299.

    • Search Google Scholar
    • Export Citation
  • Misra, V., and L. Marx, 2007: Manifestation of remote response over the equatorial Pacific in a climate model. J. Geophys. Res., 112, D20105, doi:10.1029/2007JD008597.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., 1997: The annual warm to cold phase transition in the eastern equatorial Pacific: Diagnostics of the role of stratus cloud-top cooling. J. Climate, 10, 24472467.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 2005: Trends in the upper-level cloud cover and surface divergence over the tropical Indo-Pacific Ocean between 1952 and 1997. J. Geophys. Res., 110, D21110, doi:10.1029/2005JD006183.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., and Coauthors, 2009: A comparison of PMIP2 model simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at the Last Glacial Maximum. Climate Dyn., 32, 799815.

    • Search Google Scholar
    • Export Citation
  • Petit, J. R., and Coauthors, 1999: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 339, 429436.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G., and A. V. Fedorov, 2003: Role of tropics in changing the response to Milankovich forcing some three million years ago. Paleoceanography, 2, 1045, doi:10.1029/2002PA000837.

    • Search Google Scholar
    • Export Citation
  • Phillips, J. P., and I. M. Held, 1994: The response to orbital perturbations in an atmospheric model coupled to a slab ocean. J. Climate, 7, 767782.

    • Search Google Scholar
    • Export Citation
  • Raymo, E. M., and K. Nisancioglu, 2003: The 41 kyr world: Milankovitch’s other unsolved mystery. Paleoceanography, 18, 1011, doi:10.1029/2002PA000791.

    • Search Google Scholar
    • Export Citation
  • Rind, D., 1998: Latitudinal temperature gradients and climate change. J. Geophys. Res., 103, 59435971.

  • Shin, S.-I., Z. Liu, B. Otto-Bliesner, E. C. Brady, J. E. Kutzbach, and S. P. Harrison, 2003: A simulation of the Last Glacial Maximum climate using the NCAR-CCSM. Climate Dyn., 20, 127151.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., A. J. Broccoli, and R. S. Hemler, 2004: On the use of cloud forcing to estimate cloud feedback. J. Climate, 17, 36613665.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, and R. Colman, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520.

  • Sosdian, S., and Y. Rosenthal, 2009: Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions. Science, 325, 306310.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1990: On the relationship between water vapor over the oceans and sea surface temperature. J. Climate, 3, 634645.

  • Taylor, E. K., M. Crucifix, P. Braconnot, C. D. Hewitt, C. Doutriaux, A. J. Broccoli, J. F. B. Mitchell, and M. J. Webb, 2007: Estimating shortwave radiative forcing and response in climate models. J. Climate, 20, 25302543.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., J. L. Russell, and S. R. Carson, 2006: Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography, 21, PA2005, doi:10.1029/2005PA001154.

    • Search Google Scholar
    • Export Citation
  • Trenberth, E. K., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443.

  • Vimeux, F., V. Masson, J. Jouzel, M. Stievenard, and J. R. Petit, 1999: Glacial-interglacial changes in ocean surface conditions in the Southern Hemisphere. Nature, 398, 410413.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., S.-P. Xie, B. Wang, and H. Xu, 2005: Large-scale atmospheric forcing by southeast Pacific boundary layer clouds: A regional model study. J. Climate, 18, 934951.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525531.

  • Wittenberg, A. T., A. Rosati, N.-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower tropospheric stability. J. Climate, 19, 64256432.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 636 313 24
PDF Downloads 435 209 15

Climate Feedbacks in Response to Changes in Obliquity

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 2 Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
Restricted access

Abstract

The feedbacks involved in the response of climate to a reduction of Earth’s obliquity are investigated in the GFDL Climate Model version 2.1 (CM2.1). A reduction in obliquity increases the meridional gradient of the annual mean insolation, causing a strengthening of the atmospheric and ocean circulation that transports more heat poleward. The heat transport does not balance the direct obliquity forcing completely, and additional local radiative fluxes are required to explain the change in the equilibrium energy budget. The surface temperature generally increases at low latitudes and decreases at high latitudes following the change in the insolation. However, in some areas, the sign of the temperature change is opposite of the forcing, indicating the strong influence of feedbacks. These feedbacks are also responsible for a decrease in the global mean temperature despite that the change in the global mean insolation is close to zero. The processes responsible for these changes are increases in the ice fraction at high latitudes and the global cloud fraction—both of which reduce the absorbed solar radiation. A reduction in the global greenhouse trapping, due to changes in the distribution of the water vapor content of the atmosphere as well as a change in the lapse rate, has an additional cooling effect. Among these feedbacks, clouds and the lapse rate have the larger contribution, with water vapor and surface albedo having a smaller effect. The implications of the findings presented here for interpretation of obliquity cycles in the paleoclimate record are discussed.

Corresponding author address: Damianos F. Mantsis, RSMAS, University of Miami, Miami, FL 33149. E-mail: dmantsis@rsmas.miami.edu

Abstract

The feedbacks involved in the response of climate to a reduction of Earth’s obliquity are investigated in the GFDL Climate Model version 2.1 (CM2.1). A reduction in obliquity increases the meridional gradient of the annual mean insolation, causing a strengthening of the atmospheric and ocean circulation that transports more heat poleward. The heat transport does not balance the direct obliquity forcing completely, and additional local radiative fluxes are required to explain the change in the equilibrium energy budget. The surface temperature generally increases at low latitudes and decreases at high latitudes following the change in the insolation. However, in some areas, the sign of the temperature change is opposite of the forcing, indicating the strong influence of feedbacks. These feedbacks are also responsible for a decrease in the global mean temperature despite that the change in the global mean insolation is close to zero. The processes responsible for these changes are increases in the ice fraction at high latitudes and the global cloud fraction—both of which reduce the absorbed solar radiation. A reduction in the global greenhouse trapping, due to changes in the distribution of the water vapor content of the atmosphere as well as a change in the lapse rate, has an additional cooling effect. Among these feedbacks, clouds and the lapse rate have the larger contribution, with water vapor and surface albedo having a smaller effect. The implications of the findings presented here for interpretation of obliquity cycles in the paleoclimate record are discussed.

Corresponding author address: Damianos F. Mantsis, RSMAS, University of Miami, Miami, FL 33149. E-mail: dmantsis@rsmas.miami.edu
Save