• Armstrong, R. L., and M. J. Brodzik, 1995: An earth-gridded SSM/I data set for cryospheric studies and global change monitoring. Adv. Space Res., 16, 155163.

    • Search Google Scholar
    • Export Citation
  • Bryson, R. A., 1994: The discovery of the jet stream. Wis. Acad. Rev., (Summer), 1517.

  • Caruso, S. J., and S. Businger, 2006: Subtropical cyclogenesis over the central North Pacific. Wea. Forecasting, 21, 193205.

  • Chang, C.-P., and K. M. W. Lau, 1980: Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during December 1974. Part II: Planetary-scale aspects. Mon. Wea. Rev., 108, 298312.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., and K. M. W. Lau, 1982: Short-term planetary-scale interactions over the tropics and midlatitudes during northern winter. Part I: Contrasts between active and inactive periods. Mon. Wea. Rev., 110, 933946.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183.

  • Chu, P. S., A. J. Nash, and F. Y. Porter, 1993: Diagnostic studies of two contrasting rainfall episodes in Hawaii: Dry 1981 and wet 1982. J. Climate, 6, 14571462.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogegnesis. Mon. Wea. Rev., 131, 27302747.

  • Evans, K. J., and R. X. Black, 2003: Piecewise tendency diagnosis of weather regime transitions. J. Atmos. Sci., 60, 19411959.

  • Glickman, T.Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp.

  • Higgins, R. W., and K. C. Mo, 1997: Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. J. Climate, 10, 223244.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., J. K. E. Schemm, W. Shi, and A. Leetmaa, 2000: Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 13, 793820.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci., 47, 18541864.

  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., and J. M. Wallace, 1985: Vertical structure of wintertime teleconnection patterns. J. Atmos. Sci., 42, 16931710.

  • Hulme, A. L., and J. E. Martin, 2009: Synoptic- and frontal-scale influences on tropical transition events in the Atlantic basin. Part I: A six-case survey. Mon. Wea. Rev., 137, 36053625.

    • Search Google Scholar
    • Export Citation
  • Jhun, J.-G., and E.-J. Lee, 2004: A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J. Climate, 17, 711726.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S. B. Feldstein, 2010: The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J. Climate, 23, 851867.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 14071436.

    • Search Google Scholar
    • Export Citation
  • Kodama, K., and G. M. Barnes, 1997: Heavy rain events over the south-facing slopes of Hawaii: Attendant conditions. Wea. Forecasting, 12, 347367.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and M.-T. Li, 1984: The monsoon of East Asia and its global associations—A survey. Bull. Amer. Meteor. Soc., 65, 114125.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743.

    • Search Google Scholar
    • Export Citation
  • Lefevre, R. J., 1995: Using the quasigeostrophic potential vorticity height tendency equation to diagnose the development of midtropospheric mobile troughs. Ph.D. thesis, Texas A&M University, 233 pp.

  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lyons, S. W., 1982: Empirical orthogonal function analysis of Hawaiian rainfall. J. Appl. Meteor., 21, 17131729.

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837.

  • Matthews, A. J., and G. N. Kiladis, 1999: The tropical–extratropical interaction between high-frequency transients and the Madden–Julian oscillation. Mon. Wea. Rev., 127, 661677.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden-Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011.

    • Search Google Scholar
    • Export Citation
  • Moore, R. W., O. Martius, and T. Spengler, 2010: The modulation of the subtropical and extratropical atmosphere in the Pacific basin in response to the Madden–Julian oscillation. Mon. Wea. Rev., 138, 27612779.

    • Search Google Scholar
    • Export Citation
  • Mori, M., and M. Watanabe, 2008: The growth and triggering mechanisms of the PNA: A MJO-PNA coherence. J. Meteor. Soc. Japan, 86, 213236.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and P. D. Sardeshmukh, 1998: The impact of the annual cycle on the North Pacific/North American response to remote low-frequency forcing. J. Atmos. Sci., 55, 13361353.

    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., and R. J. Lefevre, 1996: Piecewise tendency diagnosis of dynamical processes governing the development of an upper-tropospheric mobile trough. J. Atmos. Sci., 53, 31203142.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1998: Poleward deflection of storm tracks. J. Atmos. Sci., 55, 25772602.

  • Otkin, J. A., and J. E. Martin, 2004a: A synoptic climatology of the subtropical kona storm. Mon. Wea. Rev., 132, 15021517.

  • Otkin, J. A., and J. E. Martin, 2004b: The large-scale modulation of subtropical cyclogenesis in the central and eastern Pacific Ocean. Mon. Wea. Rev., 132, 18131828.

    • Search Google Scholar
    • Export Citation
  • Reiter, E. R., 1963: Jet-Stream Meteorology. University of Chicago Press, 515 pp.

  • Reiter, E. R., 1967: Jet Streams; How Do They Affect Our Weather? Doubleday, 189 pp.

  • Schubert, S. D., and C.-K. Park, 1991: Low-frequency intraseasonal tropical–extratropical interactions. J. Atmos. Sci., 48, 629650.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., 1995: Climatological aspects of cyclone development and decay in the Arctic. Atmos.–Ocean, 33, 123.

  • Serreze, M. C., F. Carse, R. G. Barry, and J. C. Rogers, 1997: Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate, 10, 453464.

    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., 1952: Evolution of the kona storm, a subtropical cyclone. J. Meteor., 9, 2435.

  • Valdes, P. J., and B. J. Hoskins, 1989: Linear stationary wave simulations of the time-mean climatological flow. J. Atmos. Sci., 46, 25092527.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113, 941961.

    • Search Google Scholar
    • Export Citation
  • Wu, B. W., R. Zhang, and R. D’Arrigo, 2006: Distinct modes of the East Asian winter monsoon. Mon. Wea. Rev., 134, 21652179.

  • Wu, M. C., and J. C. L. Chan, 1997: Upper-level features associated with winter monsoon surges over south China. Mon. Wea. Rev., 125, 317340.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, Y., K. R. Sperer, and J. S. Boyle, 1997: Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979–95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125, 26052619.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., 2008: An index of East Asian winter monsoon applied to the description of China’s mainland winter temperature changes. Acta Meteor. Sin., 22, 522529.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 242 114 18
PDF Downloads 131 61 12

A Synoptic Climatology of Episodic, Subseasonal Retractions of the Pacific Jet

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, Madison, Wisconsin
Restricted access

Abstract

Twenty-eight years of NCEP–NCAR reanalysis data are employed in a composite analysis of the structure and evolution of the large-scale circulation associated with rapid, subseasonal, westward retractions of the Northern Hemisphere Pacific jet. Nineteen Pacific jet retractions are identified in the dataset. The salient characteristics of these transitions are presented, emphasizing the structure and evolution of anomalies in the zonal wind, upper-tropospheric geopotential height, sea level pressure (SLP), and tropopause potential vorticity (PV). The composite analysis demonstrates that as the jet retracts, a transition from a dominant negative anomaly to a dominant positive anomaly across the North Pacific in both the 500-hPa geopotential height and SLP fields occurs in ~10 days. The resulting anticyclonic anomalies are sprawling and intense with SLP anomalies of nearly 20 hPa and 500-hPa geopotential height anomalies of more than 200 m. The vertical superposition of these upper- and lower-level anomalies indicates that these composite structures are equivalent barotropic. These results are also consistent with the composite 200–250-hPa Ertel PV anomaly field, in which a jet retraction event is characterized by the formation of a zonally elongated, meridionally oriented PV anomaly couplet in the central North Pacific that becomes increasingly isotropic in the jet exit region simultaneous with the retraction of the jet. Because of the large spatial scale of these events, the results are also discussed in the context of storm-track variability, the East Asian winter monsoon, and tropical diabatic heating anomalies.

Corresponding author address: Jonathan E. Martin, Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, 1225 W. Dayton Street, Madison, WI 53706. E-mail: jemarti1@wisc.edu

Abstract

Twenty-eight years of NCEP–NCAR reanalysis data are employed in a composite analysis of the structure and evolution of the large-scale circulation associated with rapid, subseasonal, westward retractions of the Northern Hemisphere Pacific jet. Nineteen Pacific jet retractions are identified in the dataset. The salient characteristics of these transitions are presented, emphasizing the structure and evolution of anomalies in the zonal wind, upper-tropospheric geopotential height, sea level pressure (SLP), and tropopause potential vorticity (PV). The composite analysis demonstrates that as the jet retracts, a transition from a dominant negative anomaly to a dominant positive anomaly across the North Pacific in both the 500-hPa geopotential height and SLP fields occurs in ~10 days. The resulting anticyclonic anomalies are sprawling and intense with SLP anomalies of nearly 20 hPa and 500-hPa geopotential height anomalies of more than 200 m. The vertical superposition of these upper- and lower-level anomalies indicates that these composite structures are equivalent barotropic. These results are also consistent with the composite 200–250-hPa Ertel PV anomaly field, in which a jet retraction event is characterized by the formation of a zonally elongated, meridionally oriented PV anomaly couplet in the central North Pacific that becomes increasingly isotropic in the jet exit region simultaneous with the retraction of the jet. Because of the large spatial scale of these events, the results are also discussed in the context of storm-track variability, the East Asian winter monsoon, and tropical diabatic heating anomalies.

Corresponding author address: Jonathan E. Martin, Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, 1225 W. Dayton Street, Madison, WI 53706. E-mail: jemarti1@wisc.edu
Save