• Arthern, R. J., D. P. Winebrenner, and D. G. Vaughan, 2006: Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. J. Geophys. Res., 111, D06107, doi:10.1029/2004JD005667.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., M. S. Halpert, V. E. Kousky, M. E. Gelman, C. F. Ropelewski, A. V. Douglas, and R. C. Schnell, 1999: Climate assessment for 1998. Bull. Amer. Meteor. Soc., 80, S1S48.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., 1998: The contribution of snowdrift sublimation to the surface mass balance of Antarctica. Ann. Glaciol., 27, 251259.

  • Bitz, C. M., and Q. Fu, 2008: Arctic warming aloft is data set dependent. Nature, 455, E3E4.

  • Bloom, S., L. Takacs, A. DaSilva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271.

    • Search Google Scholar
    • Export Citation
  • Bolzan, J. F., and M. Strobel, 1994: Accumulation rate variations around Summit, Greenland. J. Glaciol., 40, 5666.

  • Bosilovich, M. G., F. R. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, in press.

  • Box, J. E., and A. Rinke, 2003: Evaluation of Greenland Ice Sheet surface climate in the HIRHAM regional climate model using automatic weather station data. J. Climate, 16, 13021319.

    • Search Google Scholar
    • Export Citation
  • Box, J. E., and Coauthors, 2006: Greenland Ice Sheet surface mass balance variability (1988–2004) from calibrated Polar MM5 output. J. Climate, 19, 27832800.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., and D. H. Bromwich, 1998: Polar climate simulations of the NCAR CCM3. J. Climate, 11, 12701286.

  • Bromwich, D. H., R. I. Cullather, Q.-S. Chen, and B. M. Csathó, 1998: Evaluation of recent precipitation studies for Greenland Ice Sheet. J. Geophys. Res., 103, 26 00726 024.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., R. I. Cullather, and M. C. Serreze, 2000: Reanalyses depictions of the Arctic atmospheric moisture budget. The Freshwater Budget of the Arctic Ocean, E. L. Lewis et al., Eds., NATO Science Series 2, Vol. 70, Kluwer Academic Publishers, 163–196.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., S.-H. Wang, and A. J. Monaghan, 2002: ERA-40 representation of the Arctic atmospheric moisture budget. Workshop on re-analysis, 5-9 November 2001, ERA-40 Project Rep. Series, ECMWF Tech. Rep. 3, 287–298.

    • Search Google Scholar
    • Export Citation
  • Burgess, E. W., R. R. Forster, J. E. Box, E. Mosley-Thompson, D. H. Bromwich, R. C. Bales, and L. C. Smith, 2010: A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958–2007). J. Geophys. Res., 115, F02004, doi:10.1029/2009JF001293.

    • Search Google Scholar
    • Export Citation
  • Colony, R., V. Radionov, and F. J. Tanis, 1998: Measurements of precipitation and snow pack at Russian North Pole drifting stations. Polar Rec., 34, 314.

    • Search Google Scholar
    • Export Citation
  • Eisen, O., and Coauthors, 2008: Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarctica. Rev. Geophys., 46, RG2001, doi:10.1029/2006RG000218.

    • Search Google Scholar
    • Export Citation
  • Ettema, J., M. R. van den Broeke, E. van Meijgaard, W. J. van de Berg, J. L. Bamber, J. E. Box, and R. C. Bales, 2009: Higher surface mass balance of the Greenland Ice Sheet revealed by high-resolution climate modeling. Geophys. Res. Lett., 36, L12501, doi:10.1029/2009GL38110.

    • Search Google Scholar
    • Export Citation
  • Genthon, C., and G. Krinner, 1998: Convergence and disposal of energy and moisture on the Antarctic polar cap from ECMWF reanalyses and forecasts. J. Climate, 11, 17031716.

    • Search Google Scholar
    • Export Citation
  • Genthon, C., G. Krinner, and M. Sacchettini, 2003: Interannual Antarctic tropospheric circulation and precipitation variability. Climate Dyn., 21, 289307.

    • Search Google Scholar
    • Export Citation
  • Gesch, D. B., 1994: Topographic data requirements for EOS global change research. U.S. Geological Survey Open-File Rep. 94-626, 60 pp.

  • Gibson, J. K., P. Kållberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ERA-15 Project Rep. Series, ECMWF Tech. Rep. 1, 72 pp.

    • Search Google Scholar
    • Export Citation
  • Giovinetto, M. B., and H. J. Zwally, 2000: Spatial distribution of net surface accumulation on the Antarctic Ice Sheet. Ann. Glaciol., 31, 171178.

    • Search Google Scholar
    • Export Citation
  • Giovinetto, M. B., D. H. Bromwich, and G. Wendler, 1992: Atmospheric net transport of water vapor and latent heat across 70°S. J. Geophys. Res., 97, 917930.

    • Search Google Scholar
    • Export Citation
  • GMAO, 2008: File specification for MERRA products, version 2.1. NASA Tech. Memo., 96 pp. [Available online at http://gmao.gsfc.nasa.gov/products/documents/MERRA_FileSpec.]

    • Search Google Scholar
    • Export Citation
  • Gorshkov, S. G., Ed., 1983: Arctic Ocean. Vol. 3, World Ocean Atlas, Pergamon, 189 pp.

  • Grant, A. N., S. Brönnimann, and L. Haimberger, 2008: Recent Arctic warming vertical structure contested. Nature, 455, E2E3.

  • Groves, D. G., and J. A. Francis, 2002: Moisture budget of the Arctic atmosphere from TOVS satellite data. J. Geophys. Res., 107, 4391, doi:10.1029/2001JD001191.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, and G. J. Marshall, 2000: Artificial surface pressure trends in the NCEP–NCAR reanalysis over the Southern Ocean and Antarctica. J. Climate, 13, 39403952.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2001: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

    • Search Google Scholar
    • Export Citation
  • Jakobson, E., and T. Vihma, 2010: Atmospheric moisture budget in the Arctic based on the ERA-40 reanalysis. Int. J. Climatol., 30, 21752194.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Koster, R. D., M. J. Suárez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general circulation model 1. Model structure. J. Geophys. Res., 105, 24 80924 822.

    • Search Google Scholar
    • Export Citation
  • Le Brocq, A. M., A. J. Payne, and A. Vieli, cited 2010: Antarctic dataset in netCDF format. [Available online at http://doi.pangaea.de/10.1594/PANGAEA.734145.]

    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Yang, and J. W. Merchant, 2000: Development of a global land cover characteristics database and IGBP DISCOVER from 1 km AVHRR data. Int. J. Remote Sens., 21, 13031330.

    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., and D. H. Bromwich, 2008: Advances in describing recent Antarctic climate variability. Bull. Amer. Meteor. Soc., 89, 12951306.

    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., D. H. Bromwich, and S.-H. Wang, 2006: Recent trends in Antarctic snow accumulation from Polar MM5 simulations. Philos. Trans. Roy. Soc., A364, 16831708.

    • Search Google Scholar
    • Export Citation
  • Moody, E. G., M. D. King, S. Platnick, C. B. Schaaf, and F. Gao, 2005: Spatially complete global spectral surface albedos: Value-added datasets derived from Terra MODIS land products. IEEE Trans. Geosci. Remote Sens., 43, 144158.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., and J. M. Wallace, 2007: Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation. Geophys. Res. Lett., 34, L12705, doi:10.1029/2007GL029897.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA GSFC Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-2007-104606, Vol. 27, 95 pp.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA—NASA’s Modern Era Retrospective-Analysis for Research and Applications. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Rinke, A., and Coauthors, 2006: Evaluation of an ensemble of Arctic regional climate models. Spatiotemporal fields during the SHEBA year. Climate Dyn., 26, 459472.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Serreze, M. C., R. G. Barry, and J. E. Walsh, 1995: Atmospheric water vapor characteristics at 70°N. J. Climate, 8, 719731.

  • Serreze, M. C., and Coauthors, 2006: The large-scale freshwater cycle of the Arctic. J. Geophys. Res., 111, C11010, doi:10.1029/2005JC003424.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

    • Search Google Scholar
    • Export Citation
  • Stieglitz, M., A. Ducharne, R. D. Koster, and M. J. Suarez, 2001: The impact of detailed snow physics on the simulation of snow cover and subsurface thermodynamics at continental scales. J. Hydrometeor., 2, 228242.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300.

    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., 2008: Arctic tropospheric warming amplification? Nature, 455, E1E2.

  • Tietäväinen, H., and T. Vihma, 2008: Atmospheric moisture budget over Antarctica and the Southern Ocean based on the ERA-40 reanalysis. Int. J. Climatol., 28, 19771995.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., T. Koike, and K. Onogi, 2008: Progress and prospects for reanalysis for weather and climate. Eos, Trans. Amer. Geophys. Union, 89, 234235.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • van de Berg, W. J., M. R. van den Broeke, C. H. Reijmer, and E. van Meijgaard, 2006: Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J. Geophys. Res., 111, D11104, doi:10.1029/2005JD006495.

    • Search Google Scholar
    • Export Citation
  • Vaughan, D. G., J. L. Bamber, M. Giovinetto, J. Russell, and A. P. R. Cooper, 1999: Reassessment of net surface mass balance in Antarctica. J. Climate, 12, 933946.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., V. M. Kattsov, W. L. Chapman, V. Govorkova, and T. Pavlova, 2002: Comparison of Arctic climate simulations by uncoupled and coupled global models. J. Climate, 15, 14291446.

    • Search Google Scholar
    • Export Citation
  • Yang, D., 1999: An improved precipitation climatology for the Arctic Ocean. Geophys. Res. Lett., 26, 16251628.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 232 138 5
PDF Downloads 122 50 5

The Moisture Budget of the Polar Atmosphere in MERRA

View More View Less
  • 1 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 2 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

The atmospheric moisture budget from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) is evaluated in polar regions for the period 1979–2005 and compared with previous estimates, accumulation syntheses over polar ice sheets, and in situ Arctic precipitation observations. The system is based on a nonspectral background model and utilizes the incremental analysis update scheme. The annual moisture convergence from MERRA for the north polar cap is comparable to previous estimates using 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) and earlier reanalyses but it is more than 50% larger than MERRA precipitation minus evaporation (PE) computed from physics output fields. This imbalance is comparable to earlier reanalyses for the Arctic. For the south polar cap, the imbalance is 20%. The MERRA physics output fields are also found to be overly sensitive to changes in the satellite observing system, particularly over data-sparse regions of the Southern Ocean. Comparisons between MERRA and prognostic fields from two contemporary reanalyses yield a spread of values from 6% of the mean over the Antarctic Ice Sheet to 61% over a domain of the Arctic Ocean. These issues highlight continued problems associated with the representation of cold-climate physical processes in global data assimilation models. The distribution of MERRA surface fluxes over the major polar ice sheets emphasizes larger values along the coastal escarpments, which agrees more closely with recent assessments of ice sheet accumulation using regional models. Differences between these results and earlier assessments illustrate a continued ambiguity in the surface moisture flux distribution over Greenland and Antarctica. The higher spatial and temporal resolution as well as the availability of all budget components, including analysis increments in MERRA, offer prospects for an improved representation of the high-latitude water cycle in reanalyses.

Corresponding author address: Richard Cullather, ESSIC, University of Maryland at College Park, c/o NASA/GSFC Code 610.1, 8800 Greenbelt Road, Greenbelt, MD 20771. E-mail: richard.cullather@nasa.gov

This article included in the Modern Era Retrospective-Analysis for Research and Applications (MERRA) special collection.

This article included in the U.S. CLIVAR SeaFlux special collection.

Abstract

The atmospheric moisture budget from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) is evaluated in polar regions for the period 1979–2005 and compared with previous estimates, accumulation syntheses over polar ice sheets, and in situ Arctic precipitation observations. The system is based on a nonspectral background model and utilizes the incremental analysis update scheme. The annual moisture convergence from MERRA for the north polar cap is comparable to previous estimates using 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) and earlier reanalyses but it is more than 50% larger than MERRA precipitation minus evaporation (PE) computed from physics output fields. This imbalance is comparable to earlier reanalyses for the Arctic. For the south polar cap, the imbalance is 20%. The MERRA physics output fields are also found to be overly sensitive to changes in the satellite observing system, particularly over data-sparse regions of the Southern Ocean. Comparisons between MERRA and prognostic fields from two contemporary reanalyses yield a spread of values from 6% of the mean over the Antarctic Ice Sheet to 61% over a domain of the Arctic Ocean. These issues highlight continued problems associated with the representation of cold-climate physical processes in global data assimilation models. The distribution of MERRA surface fluxes over the major polar ice sheets emphasizes larger values along the coastal escarpments, which agrees more closely with recent assessments of ice sheet accumulation using regional models. Differences between these results and earlier assessments illustrate a continued ambiguity in the surface moisture flux distribution over Greenland and Antarctica. The higher spatial and temporal resolution as well as the availability of all budget components, including analysis increments in MERRA, offer prospects for an improved representation of the high-latitude water cycle in reanalyses.

Corresponding author address: Richard Cullather, ESSIC, University of Maryland at College Park, c/o NASA/GSFC Code 610.1, 8800 Greenbelt Road, Greenbelt, MD 20771. E-mail: richard.cullather@nasa.gov

This article included in the Modern Era Retrospective-Analysis for Research and Applications (MERRA) special collection.

This article included in the U.S. CLIVAR SeaFlux special collection.

Save