• Ackerman, T. P., and O. B. Toon, 1981: Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles. Appl. Opt., 20, 36613667.

    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., and G. A. Meehl, 2006: Contributions of external forcings to southern annular mode trends. J. Climate, 19, 28962905.

    • Search Google Scholar
    • Export Citation
  • Bauer, S. E., and D. Koch, 2005: Impact of heterogeneous sulfate formation at mineral dust surfaces on aerosol loads and radiative forcing in the Goddard Institute for Space Studies general circulation model. J. Geophys. Res., 110, D17202, doi:10.1029/2005JD005870.

    • Search Google Scholar
    • Export Citation
  • Bauer, S. E., D. Koch, N. Unger, S. M. Metzger, D. T. Shindell, and D. Streets, 2007: Nitrate aerosols today and in 2030: Importance relative to other aerosol species and tropospheric ozone. Atmos. Chem. Phys., 7, 50435059.

    • Search Google Scholar
    • Export Citation
  • Bauer, S. E., D. Wright, D. Koch, E. R. Lewis, R. McGraw, L.-S. Chang, S. E. Schwartz, and R. Ruedy, 2008: MATRIX (Multiconfiguration Aerosol Tracker of mixing state): An aerosol microphysical module for global atmospheric models. Atmos. Chem. Phys., 8, 60036035.

    • Search Google Scholar
    • Export Citation
  • Bauer, S. E., S. Menon, D. Koch, T. C. Bond, and K. Tsigaridis, 2010: A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects. Atmos. Chem. Phys., 10, 74397456.

    • Search Google Scholar
    • Export Citation
  • Bell, N., D. Koch, and D. T. Shindell, 2005: Impacts of chemistry-aerosol coupling on tropospheric ozone and sulfate simulations in a general circulation model. J. Geophys. Res., 110, D14305, doi:10.1029/2004JD005538.

    • Search Google Scholar
    • Export Citation
  • Berglen, T. F., T. K. Berntsen, I. S. A. Isaksen, and J. K. Sundet, 2004: A global model of the coupled sulfur/oxidant chemistry in the troposphere: The sulfur cycle. J. Geophys. Res., 109, D19310, doi:10.1029/2003JD003948.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., and A. Giannini, 2006: Robust Sahel drying in response to late 20th century forcings. Geophys. Res. Lett., 33, L11706, doi:10.1029/2006GL026067.

    • Search Google Scholar
    • Export Citation
  • Bond, T. C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D. G. Streets, and N. M. Trautmann, 2007: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Global Biogeochem. Cycles, 21, GB2018, doi:10.1029/2006GB002840.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., and K. J. Noone, 1985: Soot in the Arctic snowpack. Atmos. Environ., 19, 20452053.

  • Flanner, M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J. Rasch, 2009: Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys., 9, 24812497.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., and Coauthors, 2001: Observed climate variability and change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 99–181.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

    • Search Google Scholar
    • Export Citation
  • Grenfell, T. C., S. G. Warren, V. F. Radionov, V. N. Makarov, and S. A. Zimov, 2009: Expeditions to the Russian Arctic to Survey Black Carbon in Snow. Eos, Trans. Amer. Geophys. Union, 90, 43, doi:10.1029/2009EO430002.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2007: Climate simulations for 1880-2003 with GISS modelE. Climate Dyn., 29, 661696, doi:10.1007/s00382-007-0255-8.

    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., S. G. Warren, T. C. Grenfell, S. J. Doherty, T. V. Larson, and A. D. Clarke, 2009: Source attribution of black carbon in Arctic snow. Environ. Sci. Technol., 43, 40164021.

    • Search Google Scholar
    • Export Citation
  • Hicks, S., and E. Isaksson, 2006: Assessing source areas of pollutants from studies of fly ash, charcoal, and pollen from Svalbard snow and ice. J. Geophys. Res., 111, D02113, doi:10.1029/2005JD006167.

    • Search Google Scholar
    • Export Citation
  • Husain, L., A. J. Khan, T. Ahmed, K. Swami, A. Bari, J. S. Webber, and J. Li, 2008: Trends in atmospheric elemental carbon concentrations from 1835 to 2005. J. Geophys. Res., 113, D13102, doi:10.1029/2007JD009398.

    • Search Google Scholar
    • Export Citation
  • Ito, A., and J. E. Penner, 2005: Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870 2000. Global Biogeochem. Cycles, 19, GB2028, doi:10.1029/2004GB002374.

    • Search Google Scholar
    • Export Citation
  • Jones, A., D. L. Roberts, M. J. Woodage, and C. E. Johnson, 2001: Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle. J. Geophys. Res., 106, 20 29320 310.

    • Search Google Scholar
    • Export Citation
  • Koch, D., D. Jacob, I. Tegen, D. Rind, and M. Chin, 1999: Tropospheric sulfur simulation and sulfate direct radiative forcing in the Goddard Institute for Space Studies general circulation model. J. Geophys. Res., 104, 23 79923 822.

    • Search Google Scholar
    • Export Citation
  • Koch, D., J. Park, and A. Del Genio, 2003: Clouds and sulfate are anticorrelated: A new diagnostic for global sulfur models. J. Geophys. Res., 108, 4781, doi:10.1029/2003JD003621.

    • Search Google Scholar
    • Export Citation
  • Koch, D., G. A. Schmidt, and C. Field, 2006: Sulfur, sea salt and radionuclide aerosols in GISS, ModelE. J. Geophys. Res., 111, D06206, doi:10.1029/2004JD005550.

    • Search Google Scholar
    • Export Citation
  • Koch, D., T. Bond, D. Streets, N. Unger, and G. R. van der Werf, 2007: Global impacts of aerosols from particular source regions and sectors. J. Geophys. Res., 112, D02205, doi:10.1029/2005JD007024.

    • Search Google Scholar
    • Export Citation
  • Koch, D., S. Menon, A. Del Genio, R. Ruedy, I. Alienov, and G. Schmidt, 2009a: Distinguishing aerosol impacts on climate during the past century. J. Climate, 22, 26592677.

    • Search Google Scholar
    • Export Citation
  • Koch, D., and Coauthors, 2009b: Evaluation of black carbon estimations in global aerosol models. Atmos. Chem. Phys., 9, 90019026.

  • Kristjansson, J. E., T. Iversen, A. Kirkevag, Ø. Seland, and J. Debernard, 2005: Response of the climate system to aerosol direct and indirect forcing: Role of cloud feedbacks. J. Geophys. Res., 110, D24206, doi:10.1029/2005JD006299.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys. Discuss., 10, 49635019.

    • Search Google Scholar
    • Export Citation
  • Lavanchy, V. M. H., H. W. Gaggeler, U. Schotterer, M. Schwikowski, and U. Baltensperger, 1999: Historical record of carbonaceous particle concentrations from a European high-alpine glacier (Colle Gnifetti, Switzerland). J. Geophys. Res., 104, 21 22721 236.

    • Search Google Scholar
    • Export Citation
  • Lemke, P., and Coauthors, 2007: Observations: Changes in snow, ice and frozen ground. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 337–383.

    • Search Google Scholar
    • Export Citation
  • Lenton, A., F. Codron, L. Bopp, N. Metzl, P. Cadule, A. Tagliabue, and J. Le Sommer, 2009: Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys. Res. Lett., 36, L12606, doi:10.1029/2009GL038227.

    • Search Google Scholar
    • Export Citation
  • Marlon, J., and Coauthors, 2008: Climate and human influences on global biomass burning during the past two millennia. Nat. Geosci., 1, 697702.

    • Search Google Scholar
    • Export Citation
  • McConnell, J. R., 2010: New Directions: Historical black carbon and other ice core aerosol records in the Arctic for GCM evaluation. Atmos. Environ., 44, 26652666, doi:10.1016/j.atmosenv.2010.04.004.

    • Search Google Scholar
    • Export Citation
  • McConnell, J. R., and R. Edwards, 2008: Coal burning leaves toxic heavy metal legacy in the Arctic. Proc. Natl. Acad. Sci. USA, 105, 1214012144, doi:10.1073/pnas.0803564105.

    • Search Google Scholar
    • Export Citation
  • McConnell, J. R., and Coauthors, 2007: 20th-century industrial black carbon emissions altered Arctic climate forcing. Science, 7, 13811384, doi:10.1126/science.1144856.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., and Coauthors, 2006: Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model. J. Geophys. Res., 111, D06206, doi:10.1029/2005JD005796.

    • Search Google Scholar
    • Export Citation
  • Mouillot, F., and C. B. Field, 2005: Fire history and the global carbon budget: A 1° × 1° fire history reconstruction for the 20th century. Global Change Biol., 11, 398420.

    • Search Google Scholar
    • Export Citation
  • Mouillot, F., A. Narasimha, Y. Balkanski, J.-F. Lamarque, and C. B. Field, 2006: Global carbon emissions from biomass burning in the 20th century. Geophys. Res. Lett., 33, L01801, doi:10.1029/2005GL024707.

    • Search Google Scholar
    • Export Citation
  • Nagashima, T., H. Shiogama, T. Yokohata, T. Takemura, S. A. Crooks, and T. Nozawa, 2006: Effect of carbonaceous aerosols on surface temperature in the mid twentieth century. Geophys. Res. Lett., 33, L04702, doi:10.1029/2005GL024887.

    • Search Google Scholar
    • Export Citation
  • National Atmospheric Deposition Program, 2008: National Atmospheric Deposition Program 2007 Annual Summary. NADP Data Rep. 2008-01. Illinois State Water Survey, University of Illinois at Urbana–Champaign.

    • Search Google Scholar
    • Export Citation
  • Novakov, T., V. Ramanathan, J. E. Hansen, T. W. Kirchstetter, M. Sato, J. E. Sinton, and J. A. Sathaye, 2003: Large historical changes of fossil-fuel black carbon aerosols. Geophys. Res. Lett., 30, 1324, doi:10.1029/2002GL016345.

    • Search Google Scholar
    • Export Citation
  • Preunkert, S., M. Legrand, and D. Wagenbach, 2001: Sulfate trends in a Col du Dome (French Alps) ice core: A record of anthropogenic sulfate levels in the European midtroposphere over the twentieth century. J. Geophys. Res., 106, 31 99132 004.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of SST, sea ice and night marine air temperatures since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., P. Stier, J. Feichter, S. Kloster, M. Esch, and I. Fischer-Bruns, 2006: Impact of carbonaceous aerosol emissions on regional climate change. Climate Dyn., 27, 553571, doi:10.1007/s00382-006-0147-3.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and U. Lohmann, 2002: Tropical rainfall trends and the indirect aerosol effect. J. Climate, 15, 21032116.

  • Rotstayn, L. D., B. F. Ryan, and J. E. Penner, 2000: Precipitation changes in a GCM resulting from the indirect effects of anthropogenic aerosols. Geophys. Res. Lett., 27, 30453048.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and Coauthors, 2007: Have Australian rainfall and cloudiness increased due to the remote effects of Asian anthropogenic aerosols? J. Geophys. Res., 112, D09202, doi:10.1029/2006JD007712.

    • Search Google Scholar
    • Export Citation
  • Russell, G. L., J. R. Miller, and D. H. Rind, 1995: A coupled atmosphere–ocean model for transient climate change. Atmos.–Ocean, 33, 683730.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19, 153192.

    • Search Google Scholar
    • Export Citation
  • Schwikowski, M., S. Brutsch, H. W. Gaggeler, and U. Schotterer, 1999: A high-resolution air chemistry record from an Alpine ice core: Fiescherhorn glacier, Swiss Alps. J. Geophys. Res., 104, 13 70913 719.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184.

    • Search Google Scholar
    • Export Citation
  • Sharma, S., D. Lavoue, H. Cachier, L. A. Barrie, and S. L. Gong, 2004: Long-term trends of the black carbon concentrations in the Canadian Arctic. J. Geophys. Res., 109, D15203, doi:10.1029/2003JD004331.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., G. Faluvegi, N. Unger, E. Aguilar, G. A. Schmidt, D. Koch, S. E. Bauer, and R. L. Miller, 2006: Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI. Atmos. Chem. Phys., 6, 44274459.

    • Search Google Scholar
    • Export Citation
  • Smith, S. J., E. Conception, R. Andres, and J. Lurz, 2004: Historical sulfur dioxide emissions 1850–2000: Methods and results. Pacific Northwest National Lab Rep. PNNL-14537, 16 pp.

    • Search Google Scholar
    • Export Citation
  • Stier, P., J. Feichter, E. Roeckner, S. Kloster, and M. Esch, 2006: The evolution of the global aerosol system in a transient climate simulation from 1860 to 2100. Atmos. Chem. Phys., 6, 30593076.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima, 2005: Simulation of climate response to aerosol. J. Geophys. Res., 110, D02202, doi:10.1029/2004JD005029.

    • Search Google Scholar
    • Export Citation
  • Tomasi, C., and Coauthors, 2007: Aerosols in polar regions: A historical overview based on optical depth and in situ observations. J. Geophys. Res., 112, D16205, doi:10.1029/2007JD008432.

    • Search Google Scholar
    • Export Citation
  • Van Aardenne, J. A., F. J. Dentener, J. G. J. Olivier, C. G. M. Klein Goldewijk, and J. Lelieveld, 2001: A high resolution dataset of historical anthropogenic trace gas emissions for the period 1890-1990. Global Biogeochem. Cycles, 15, 909928.

    • Search Google Scholar
    • Export Citation
  • van der Werf, G. R., J. T. Randerson, G. J. Collatz, and L. Giglio, 2003: Carbon emissions from fires in tropical and subtropical ecosystems. Global Change Biol., 9, 547562.

    • Search Google Scholar
    • Export Citation
  • van der Werf, G. R., J. T. Randerson, G. J. Collatz, L. Giglio, P. S. Kasibhatla, A. F. Arellano, S. C. Olsen, and E. S. Kasischke, 2004: Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period. Science, 303, 7376.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., D. J. Jacob, and J. A. Logan, 1998: Global simulation of tropospheric O3-NOx- hydrocarbon chemistry. J. Geophys. Res., 103, 10 71310 725.

    • Search Google Scholar
    • Export Citation
  • Wild, M., 2009a: How well do IPCC-AR4/CMIP3 climate models simulate global dimming/brightening and twentieth- century daytime and nighttime warming? J. Geophys. Res., 114, D00D11, doi:10.1029/2008JD011372.

    • Search Google Scholar
    • Export Citation
  • Wild, M., 2009b: Global dimming and brightening: A review. J. Geophys. Res., 114, D00D16, doi:10.1029/2008JD011470.

  • Zhang, X., F. W. Zwiers, G. C. Hegerl, F. H. Lambert, N. P. Gillett, S. Solomon, P. A. Stott, and T. Nozawa, 2007: Detection of human influences on twentieth-century precipitation trends. Nature, 448, 461466.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 411 244 8
PDF Downloads 192 86 5

Coupled Aerosol-Chemistry–Climate Twentieth-Century Transient Model Investigation: Trends in Short-Lived Species and Climate Responses

View More View Less
  • 1 NASA Goddard Institute for Space Studies, and Columbia University, New York, New York
  • | 2 NASA Goddard Institute for Space Studies, New York, New York
  • | 3 Sigma Space Partners LLC, New York, New York
  • | 4 Desert Research Institute, Reno, Nevada
  • | 5 Lawrence Berkeley National Laboratory, Berkeley, California
Restricted access

Abstract

The authors simulate transient twentieth-century climate in the Goddard Institute for Space Studies (GISS) GCM, with aerosol and ozone chemistry fully coupled to one another and to climate including a full dynamic ocean. Aerosols include sulfate, black carbon (BC), organic carbon, nitrate, sea salt, and dust. Direct and BC-snow-albedo radiative effects are included. Model BC and sulfur trends agree fairly well with records from Greenland and European ice cores and with sulfur deposition in North America; however, the model underestimates the sulfur decline at the end of the century in Greenland. Global BC effects peak early in the century (1940s); afterward the BC effects decrease at high latitudes of the Northern Hemisphere but continue to increase at lower latitudes. The largest increase in aerosol optical depth occurs in the middle of the century (1940s–80s) when sulfate forcing peaks and causes global dimming. After this, aerosols decrease in eastern North America and northern Eurasia leading to regional positive forcing changes and brightening. These surface forcing changes have the correct trend but are too weak. Over the century, the net aerosol direct effect is −0.41 W m−2, the BC-albedo effect is −0.02 W m−2, and the net ozone forcing is +0.24 W m−2. The model polar stratospheric ozone depletion develops, beginning in the 1970s. Concurrently, the sea salt load and negative radiative flux increase over the oceans around Antarctica. Net warming over the century is modeled fairly well; however, the model fails to capture the dynamics of the observed midcentury cooling followed by the late century warming. Over the century, 20% of Arctic warming and snow–ice cover loss is attributed to the BC-albedo effect. However, the decrease in this effect at the end of the century contributes to Arctic cooling.

To test the climate responses to sulfate and BC pollution, two experiments were branched from 1970 that removed all pollution sulfate or BC. Averaged over 1970–2000, the respective radiative forcings relative to the full experiment were +0.3 and −0.3 W m−2; the average surface air temperature changes were +0.2° and −0.03°C. The small impact of BC reduction on surface temperature resulted from reduced stability and loss of low-level clouds.

Current affiliation: Department of Energy, Office of Biological and Environmental Research, Washington, D.C.

Corresponding author address: Dorothy Koch, Department of Energy, SC23.1 CESD GTN, 19901 Germantown Rd., Germantown, MD 20874. E-mail: dorothy.koch@science.doe.gov

Abstract

The authors simulate transient twentieth-century climate in the Goddard Institute for Space Studies (GISS) GCM, with aerosol and ozone chemistry fully coupled to one another and to climate including a full dynamic ocean. Aerosols include sulfate, black carbon (BC), organic carbon, nitrate, sea salt, and dust. Direct and BC-snow-albedo radiative effects are included. Model BC and sulfur trends agree fairly well with records from Greenland and European ice cores and with sulfur deposition in North America; however, the model underestimates the sulfur decline at the end of the century in Greenland. Global BC effects peak early in the century (1940s); afterward the BC effects decrease at high latitudes of the Northern Hemisphere but continue to increase at lower latitudes. The largest increase in aerosol optical depth occurs in the middle of the century (1940s–80s) when sulfate forcing peaks and causes global dimming. After this, aerosols decrease in eastern North America and northern Eurasia leading to regional positive forcing changes and brightening. These surface forcing changes have the correct trend but are too weak. Over the century, the net aerosol direct effect is −0.41 W m−2, the BC-albedo effect is −0.02 W m−2, and the net ozone forcing is +0.24 W m−2. The model polar stratospheric ozone depletion develops, beginning in the 1970s. Concurrently, the sea salt load and negative radiative flux increase over the oceans around Antarctica. Net warming over the century is modeled fairly well; however, the model fails to capture the dynamics of the observed midcentury cooling followed by the late century warming. Over the century, 20% of Arctic warming and snow–ice cover loss is attributed to the BC-albedo effect. However, the decrease in this effect at the end of the century contributes to Arctic cooling.

To test the climate responses to sulfate and BC pollution, two experiments were branched from 1970 that removed all pollution sulfate or BC. Averaged over 1970–2000, the respective radiative forcings relative to the full experiment were +0.3 and −0.3 W m−2; the average surface air temperature changes were +0.2° and −0.03°C. The small impact of BC reduction on surface temperature resulted from reduced stability and loss of low-level clouds.

Current affiliation: Department of Energy, Office of Biological and Environmental Research, Washington, D.C.

Corresponding author address: Dorothy Koch, Department of Energy, SC23.1 CESD GTN, 19901 Germantown Rd., Germantown, MD 20874. E-mail: dorothy.koch@science.doe.gov
Save