• Barker, H. W., 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part I: Methodology and homogeneous biases. J. Atmos. Sci., 53, 22892303.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., 2008: Overlap of fractional cloud for radiation calculations in GCMs: A global analysis using CloudSat and CALIPSO data. J. Geophys. Res., 113, D00A01, doi:10.1029/2007JD009677.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., and P. Räisänen, 2005: Radiative sensitivities for cloud structural properties that are unresolved by conventional GCMs. Quart. J. Roy. Meteor. Soc., 131, 31033122, doi:10.1256/qj.04.174.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., B. A. Wielicki, and P. Lindsay, 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part II: Validation using satellite data. J. Atmos. Sci., 53, 23042316.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., J.-J. Morcrette, and G. D. Alexander, 1998: Broadband solar fluxes and heating rates for atmospheres with 3D broken clouds. Quart. J. Roy. Meteor. Soc., 124, 12451271.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., and Coauthors, 2003: Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds. J. Climate, 16, 26762699.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., J. N. S. Cole, J.-J. Morcrette, R. Pincus, P. Räisänen, K. von Salzen, and P. A. Vaillancourt, 2008: The Monte Carlo independent column approximation: An assessment using several global atmospheric models. Quart. J. Roy. Meteor. Soc., 134, 14631478.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482.

  • Chaboureau, J.-P., and P. Bechtold, 2002: Simple cloud parameterization derived from cloud resolving model data: Diagnostic and prognostic applications. J. Atmos. Sci., 59, 23622372.

    • Search Google Scholar
    • Export Citation
  • Charlock, T. P., and V. Ramanathan, 1985: The albedo field and cloud radiative forcing produced by a general circulation model with internally generated cloud optics. J. Atmos. Sci., 42, 14081429.

    • Search Google Scholar
    • Export Citation
  • Chen, T., W. B. Rossow, and Y. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13, 264286.

  • Fu, Q., B. Carlin, and G. Mace, 2000: Cirrus horizontal inhomogeneity and OLR bias. Geophys. Res. Lett., 27, 33413344.

  • Greenwood, J. A., and D. Durand, 1960: Aids for fitting the gamma distribution by maximum likelihood. Technometrics, 2, 5565.

  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on earth’s energy balance: Global analysis. J. Climate, 5, 12811304.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and A. J. Illingworth, 2000: Deriving cloud overlap statistics from radar. Quart. J. Roy. Meteor. Soc., 126 (569A), 29032909.

    • Search Google Scholar
    • Export Citation
  • Hoots, F. R., and R. L. Roehrich, 1980: Models for propagation of NORAD element sets. Tech. Rep., Defense Documentation Center, Space Track Rep. 3, 100 pp.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and C. Jakob, 1999: Validation and sensistivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142531.

    • Search Google Scholar
    • Export Citation
  • Li, J., and H. W. Barker, 2002: Accounting for unresolved clouds in a 1D infrared radiative transfer model. Part II: Horizontal variability of cloud water path. J. Atmos. Sci., 59, 33213339.

    • Search Google Scholar
    • Export Citation
  • Li, J., and H. W. Barker, 2005: A radiation algorigthm with correlated-k distribution. Part I: Local thermal equilibrium. J. Atmos. Sci., 62, 286309.

    • Search Google Scholar
    • Export Citation
  • Li, J., P. Dobbie, S. Räisänen, and Q. Min, 2005: Accounting for unresolved clouds in a 1-D solar radiative-transfer model. Quart. J. Roy. Meteor. Soc., 131, 16071629, doi:10.1256/qj.04.31.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., K. J. Priestley, D. P. Kratz, E. B. Geier, R. N. Green, B. Wielicki, P. Hinton, and S. Nolan, 2001: Determination of unfiltered radiances from the clouds and the earths radiant energy system instrument. J. Appl. Meteor., 40, 822835.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., N. Manalo-Smith, S. Kato, W. F. Miller, S. K. Gupta, P. Minnis, and B. A. Wielicki, 2003: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall Measuring Mission satellite. Part I: Methodology. J. Appl. Meteor., 42, 240265.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S. Kato, K. Loukachine, and N. Manalo-Smith, 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22, 338351.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S. Kato, K. Loukachine, N. Manalo-Smith, and D. R. Doelling, 2007: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part II: Validation. J. Atmos. Oceanic Technol., 24, 564584.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. Wielicki, D. Doelling, G. Smith, D. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., D. F. Young, S. Sun-Mack, P. W. Heck, D. R. Doelling, and Q. Trepte, 2003: CERES cloud property retrievals from imagers on TRMM, Terra, and Aqua. Proc. SPIE 10th Int. Symp. on Remote Sensing: Conf. on Remote Sensing of Clouds and the Atmosphere VII, Barcelona, Spain, SPIE, 37–48.

    • Search Google Scholar
    • Export Citation
  • Ockert-Bell, M. E., and D. L. Hartmann, 1992: The effect of cloud type on earth’s energy balance: Results for selected regions. J. Climate, 5, 11571171.

    • Search Google Scholar
    • Export Citation
  • O’Dell, C. W., F. Wentz, and R. Bennartz, 2008: Cloud liquid water path from satellite-based passive microwave observations: A new climatology over the global oceans. J. Climate, 21, 17211739.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res., 108, 4376, doi:10.1209/2002JD003322.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., C. Hannay, S. A. Klein, K.-M. Xu, and R. Hemler, 2005: Overlap assumptions for assumed probability distribution function cloud schemes in large-scale models. J. Geophys. Res., 110, D15S09, doi:10.1029/2004JD005100.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., R. Hemler, and S. A. Klein, 2006: Using stochastically generated subcolumns to represent cloud structure in a large-scale model. Mon. Wea. Rev., 134, 36443656.

    • Search Google Scholar
    • Export Citation
  • Räisänen, P., and H. W. Barker, 2004: Evaluation and optimization of sampling errors for the Monte Carlo Independent Column Approximation. Quart. J. Roy. Meteor. Soc., 130, 20692085.

    • Search Google Scholar
    • Export Citation
  • Räisänen, P., H. W. Barker, M. F. Khairoutdinov, J. Li, and D. A. Randall, 2004: Stochastic generation of subgrid-scale cloudy columns for large-scale models. Quart. J. Roy. Meteor. Soc., 130, 20472068.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., M. F. Khairoutdinov, A. Arakawa, and W. W. Grabowski, 2003: Breaking the cloud-parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564.

    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947973.

  • Smith, G. L., 1994: Effects of time response on the point spread function of a scanning radiometer. Appl. Opt., 33, 70317037.

  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2010: Is there a missing low cloud feedback in current climate models? GEWEX News, No. 20, International GEWEX Project Office, Silver Spring, MD, 5–7.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., P. M. Gabriel, and S.-C. Tsay, 1991: Statistical radiative transport in one-dimensional media and its application to the terrestrial atmosphere. Transp. Theory Stat. Phys., 20, 139175.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., D. Williamson, and F. Zwiers, 2000: The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. Tech. Rep., PCMDI Rep. 60, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, CA, 24 pp.

    • Search Google Scholar
    • Export Citation
  • von Salzen, K., N. A. McFarlane, and M. Lazare, 2005: The role of shallow convection in the water and energy cycles of the atmosphere. Climate Dyn., 25, 671688, doi:10.1007/s00382-005-0051-2.

    • Search Google Scholar
    • Export Citation
  • Webb, M., C. Senior, S. Bony, and J.-J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17, 905922.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, J. T. Bacmeister, J. T. Kiehl, I. M. Held, M. Zhao, S. A. Klein, and B. J. Soden, 2006: A comparison of low-latitude cloud properties and their response to climate change in three AGCMs sorted into regimes using mid-tropospheric vertical velocity. Climate Dyn., 27, 261279, doi:10.1007/s00382-006-0138-4.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2010: Why is longwave cloud feedback positive? J. Geophys. Res., 115, D16117, doi:10.1029/2010JD013817.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general ciculation models with satellite measurements. J. Geophys. Res., 110, D15S02, doi:10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 196 88 4
PDF Downloads 26 14 0

Assessing Simulated Clouds and Radiative Fluxes Using Properties of Clouds Whose Tops are Exposed to Space

View More View Less
  • 1 Canadian Centre for Climate Modelling and Analysis, Environment Canada, Toronto, Ontario, Canada
  • | 2 Cloud Physics and Severe Weather Research Section, Environment Canada, Toronto, Ontario, Canada
  • | 3 NASA Langley Research Center, Hampton, Virginia
  • | 4 Canadian Centre for Climate Modelling and Analysis, Environment Canada, Victoria, British Colombia, Canada
Restricted access

Abstract

Coincident top-of-atmosphere (TOA) radiative fluxes and cloud optical properties for portions of clouds whose tops are exposed to space within several pressure ranges are used to evaluate how a GCM realizes its all-sky radiative fluxes and vertical structure. In particular, observations of cloud properties and radiative fluxes from the Clouds and the Earth’s Radiant Energy System (CERES) Science Team are used to assess the Canadian Centre for Climate Modeling and Analysis atmospheric global climate model (CanAM4). Through comparison of CanAM4 with CERES observations it was found that, while the July-mean all-sky TOA shortwave and longwave fluxes simulated by CanAM4 agree well with those observed, this agreement rests on compensating biases in simulated cloud properties and radiative fluxes for low, middle, and high clouds. Namely, low and middle cloud albedos simulated by CanAM4 are larger than those observed by CERES attributable to CanAM4 simulating cloud optical depths via large liquid water paths that are too large but are partly compensated by too small cloud fractions. It was also found that CanAM4 produces 2D histograms of cloud fraction and cloud albedo for low, middle, and high clouds that are significantly different than generated using the CERES observations.

Corresponding author address: Jason N. S. Cole, Canadian Centre for Climate Modelling and Analysis, Climate Research Division, Environment Canada, 4905 Dufferin St., Toronto ON M3H 5T4, Canada. E-mail: jason.cole@ec.gc.ca

Abstract

Coincident top-of-atmosphere (TOA) radiative fluxes and cloud optical properties for portions of clouds whose tops are exposed to space within several pressure ranges are used to evaluate how a GCM realizes its all-sky radiative fluxes and vertical structure. In particular, observations of cloud properties and radiative fluxes from the Clouds and the Earth’s Radiant Energy System (CERES) Science Team are used to assess the Canadian Centre for Climate Modeling and Analysis atmospheric global climate model (CanAM4). Through comparison of CanAM4 with CERES observations it was found that, while the July-mean all-sky TOA shortwave and longwave fluxes simulated by CanAM4 agree well with those observed, this agreement rests on compensating biases in simulated cloud properties and radiative fluxes for low, middle, and high clouds. Namely, low and middle cloud albedos simulated by CanAM4 are larger than those observed by CERES attributable to CanAM4 simulating cloud optical depths via large liquid water paths that are too large but are partly compensated by too small cloud fractions. It was also found that CanAM4 produces 2D histograms of cloud fraction and cloud albedo for low, middle, and high clouds that are significantly different than generated using the CERES observations.

Corresponding author address: Jason N. S. Cole, Canadian Centre for Climate Modelling and Analysis, Climate Research Division, Environment Canada, 4905 Dufferin St., Toronto ON M3H 5T4, Canada. E-mail: jason.cole@ec.gc.ca
Save