• Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321 (5895), 14811484.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232.

  • Betts, A. K., 1998: Climate-convection feedbacks: Some further issues. Climatic Change, 39, 3538.

  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482.

  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., 2003: The global water cycle and climate change. Extended Abstracts, Third GPM Workshop: Consolidating the Concept, Noordwijk, Netherlands, ESTEC. [Available online at http://esamultimedia.esa.int/conferences/03C06/abstracts/s311.pdf.]

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., M.-S. Yao, and J. Jonas, 2007: Will moist convection be stronger in a warmer climate? Geophys. Res. Lett., 34, L16703, doi:10.1029/2007GL030525.

    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, doi:10.1029/2005GL023272.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., S. K. Krueger, and K. N. Liou, 1995: Interactions of radiation and convection in simulated tropical cloud clusters. J. Atmos. Sci., 52, 13101328.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud–climate feedback. Geophys. Res. Lett., 29, 1951, doi:10.1029/2002GL015835.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Iribarne, J. V., and W. L. Godson, 1981: Atmospheric Thermodynamics. 2nd ed. D. Reidel, 25 pp.

  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud-resolving modeling of the arm summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 14191444.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and D. L. Hartmann, 2007: Testing the fixed anvil temperature hypothesis in a cloud-resolving model. J. Climate, 20, 20512057.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and R. A. Houze, 1979: The structure and evolution of convection in a tropical cloud cluster. J. Atmos. Sci., 36, 437457.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514.

    • Search Google Scholar
    • Export Citation
  • Liu, S. C., C. Fu, C.-J. Shiu, J.-P. Chen, and F. Wu, 2009: Temperature dependence of global precipitation extremes. Geophys. Res. Lett., 36, L17702, doi:10.1029/2009GL040218.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., L. E. Back, P. A. O’Gorman, and K. A. Emanuel, 2009: A model for the relationship between tropical precipitation and column water vapor. Geophys. Res. Lett., 36, L16804, doi:10.1029/2009GL039667.

    • Search Google Scholar
    • Export Citation
  • Neelin, J., O. Peters, and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384.

  • O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009a: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009b: Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J. Climate, 22, 56765685.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and C. J. Muller, 2010: How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations? Environ. Res. Lett., 5, 025207, doi:10.1088/1748-9326/5/2/025207.

    • Search Google Scholar
    • Export Citation
  • Pall, P., M. R. Allen, and D. A. Stone, 2007: Testing the Clausius-Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351363.

    • Search Google Scholar
    • Export Citation
  • Parodi, A., and K. A. Emanuel, 2009: A theory for buoyancy and velocity scales in deep moist convection. J. Atmos. Sci., 66, 34493463.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and S. Garner, 2006: Sensitivity of radiative-convective equilibrium simulations to horizontal resolution. J. Atmos. Sci., 63, 19101923.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671.

  • Romps, D. M., 2011: Response of tropical precipitation to global warming. J. Atmos. Sci., 68, 123138.

  • Stephens, G. L., and T. D. Ellis, 2008: Controls of global-mean precipitation increases in global warming GCM experiments. J. Climate, 21, 61416155.

    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., H. Shiogama, and S. Emori, 2010: Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc. Natl. Acad. Sci. USA, 107, 571575.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327339.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.

  • Wilcox, E. M., and L. J. Donner, 2007: The frequency of extreme rain events in satellite rain-rate estimates and an atmospheric general circulation model. J. Climate, 20, 5369.

    • Search Google Scholar
    • Export Citation
  • Williams, E., T. Chan, and D. Boccippio, 2004: Islands as miniature continents: Another look at the land-ocean lightning contrast. J. Geophys. Res., 109, D16206, doi:10.1029/2003JD003833.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 541 291 13
PDF Downloads 460 243 15

Intensification of Precipitation Extremes with Warming in a Cloud-Resolving Model

View More View Less
  • 1 Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 2 University of Wisconsin—Madison, Madison, Wisconsin
Restricted access

Abstract

A cloud-resolving model is used to investigate the effect of warming on high percentiles of precipitation (precipitation extremes) in the idealized setting of radiative-convective equilibrium. While this idealized setting does not allow for several factors that influence precipitation in the tropics, it does allow for an evaluation of the response of precipitation extremes to warming in simulations with resolved rather than parameterized convection. The methodology developed should also be applicable to less idealized simulations.

Modeled precipitation extremes are found to increase in magnitude in response to an increase in sea surface temperature. A dry static energy budget is used to relate the changes in precipitation extremes to changes in atmospheric temperature, vertical velocity, and precipitation efficiency. To first order, the changes in precipitation extremes are captured by changes in the mean temperature structure of the atmosphere. Changes in vertical velocities play a secondary role and tend to weaken the strength of precipitation extremes, despite an intensification of updraft velocities in the upper troposphere. The influence of changes in condensate transports on precipitation extremes is quantified in terms of a precipitation efficiency; it does not change greatly with warming.

Tropical precipitation extremes have previously been found to increase at a greater fractional rate than the amount of atmospheric water vapor in observations of present-day variability and in some climate model simulations with parameterized convection. But the fractional increases in precipitation extremes in the cloud-resolving simulations are comparable in magnitude to those in surface water vapor concentrations (owing to a partial cancellation between dynamical and thermodynamical changes), and are substantially less than the fractional increases in column water vapor.

Corresponding author address: Caroline J. Muller, Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139-4307. E-mail: mullerc@mit.edu

Abstract

A cloud-resolving model is used to investigate the effect of warming on high percentiles of precipitation (precipitation extremes) in the idealized setting of radiative-convective equilibrium. While this idealized setting does not allow for several factors that influence precipitation in the tropics, it does allow for an evaluation of the response of precipitation extremes to warming in simulations with resolved rather than parameterized convection. The methodology developed should also be applicable to less idealized simulations.

Modeled precipitation extremes are found to increase in magnitude in response to an increase in sea surface temperature. A dry static energy budget is used to relate the changes in precipitation extremes to changes in atmospheric temperature, vertical velocity, and precipitation efficiency. To first order, the changes in precipitation extremes are captured by changes in the mean temperature structure of the atmosphere. Changes in vertical velocities play a secondary role and tend to weaken the strength of precipitation extremes, despite an intensification of updraft velocities in the upper troposphere. The influence of changes in condensate transports on precipitation extremes is quantified in terms of a precipitation efficiency; it does not change greatly with warming.

Tropical precipitation extremes have previously been found to increase at a greater fractional rate than the amount of atmospheric water vapor in observations of present-day variability and in some climate model simulations with parameterized convection. But the fractional increases in precipitation extremes in the cloud-resolving simulations are comparable in magnitude to those in surface water vapor concentrations (owing to a partial cancellation between dynamical and thermodynamical changes), and are substantially less than the fractional increases in column water vapor.

Corresponding author address: Caroline J. Muller, Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139-4307. E-mail: mullerc@mit.edu
Save