• Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi:10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Alvarez-Ramirez, J., J. C. Echeverria, and E. Rodriguez, 2008: Performance of a high-dimensional R/S method for Hurst exponent estimation. Physica, 387A, 64526462.

    • Search Google Scholar
    • Export Citation
  • Bai, A., P. Zhai, and X. Liu, 2007: Climatology and trends of wet spells in China. Theor. Appl. Climatol., 88, 139148, doi:10.1007/s00704-006-0235-7.

    • Search Google Scholar
    • Export Citation
  • Becker, S., H. Hartmann, M. Coulibaly, Q. Zhang, and T. Jiang, 2007: Quasi periodicities of extreme precipitation events in the Yangtze River basin, China. Theor. Appl. Climatol., 94, 139152, doi:10.1007/s00704-007-0357-6.

    • Search Google Scholar
    • Export Citation
  • Beguería, S., 2005: Uncertainties in partial duration series modeling of extremes related to the choice of the threshold value. J. Hydrol., 303, 215230.

    • Search Google Scholar
    • Export Citation
  • Beguería, S., and S. M. Vicente-Serrano, 2006: Mapping the hazard of extreme rainfall by peaks over threshold extreme value analysis and spatial regression techniques. J. Appl. Meteor. Climatol., 45, 108124.

    • Search Google Scholar
    • Export Citation
  • Brabson, B. B., and J. P. Palutikof, 2000: Tests of the generalized Pareto distribution for predicting extreme wind speeds. J. Appl. Meteor., 39, 16271640.

    • Search Google Scholar
    • Export Citation
  • Buishand, T. A., 1985: The effect of seasonal variation and serial correlation on the extreme value distribution of rainfall data. J. Climate Appl. Meteor., 24, 154160.

    • Search Google Scholar
    • Export Citation
  • Carbone, A., 2007: Algorithm to estimate the Hurst exponent of high-dimensional fractals. Phys. Rev. E, 76, 056703, doi:10.1103/PhysRevE.76.056703.

    • Search Google Scholar
    • Export Citation
  • Chen, G.T.-J., C.-C. Wang, and D.T.-W. Lin, 2005: Characteristics of low-level jets over northern Taiwan in mei-yu season and their relationship to heavy rain events. Mon. Wea. Rev., 133, 2043.

    • Search Google Scholar
    • Export Citation
  • Choulakian, V., and M. A. Stephens, 2001: Goodness-of-fit tests for the generalized Pareto distribution. Technometrics, 43, 478484.

  • Cunnane, C., 1979: A note on the Poisson assumption in partial duration series models. Water Resour. Res., 15, 489494.

  • Davison, A. C., and R. L. Smith, 1990: Models for exceedances over high thresholds. J. Roy. Stat. Soc., 52B, 393442.

  • Easterling, D. R., J. L. Evans, P. Ya. Groisman, T. R. Karl, K. E. Kunkel, and P. Ambenje, 2000: Observed variability and trends in extreme climate events: A brief review. Bull. Amer. Meteor. Soc., 81, 417425.

    • Search Google Scholar
    • Export Citation
  • Feng, S., Q. Hu, and W. Qian, 2004: Quality control of daily meteorological data in China, 1951–2000: A new dataset. Int. J. Climatol., 24, 853870.

    • Search Google Scholar
    • Export Citation
  • Ferro, C. A. T., and J. Segers, 2003: Inference for clusters of extreme values. J. Roy. Stat. Soc., 65B, 545556.

  • Frei, C., and C. Schär, 2001: Detection probability of trends in rare events: Theory and application to heavy precipitation in the Alpine region. J. Climate, 14, 15681584.

    • Search Google Scholar
    • Export Citation
  • Fu, J., W. H. Qian, X. Lin, and D. Chen, 2008: Trends in graded precipitation in China from 1961 to 2000. Adv. Atmos. Sci., 25, 267278.

    • Search Google Scholar
    • Export Citation
  • García, J. A., M. C. Gallego, A. Serrano, and J. M. Vaquero, 2007: Trends in block-seasonal extreme rainfall over the Iberian Peninsula in the second half of the twentieth century. J. Climate, 20, 113130.

    • Search Google Scholar
    • Export Citation
  • Gong, D. Y., and C. H. Ho, 2002: Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys. Res. Lett., 29, 1436, doi:10.1029/2001GL014523.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., V. Venugopal, D. Sengupta, M. S. Madhusoodanan, and P. K. Xavier, 2006: Increasing trend of extreme rain events over India in a warming environment. Science, 314, 14421445.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., and Coauthors, 1999: Changes in the probability of heavy precipitation: Important indicators of climatic change. Climatic Change, 42, 243283.

    • Search Google Scholar
    • Export Citation
  • Gu, G., and W. Zhou, 2006: Detrended fluctuation analysis for fractals and multifractals in higher dimensions. Phy. Rev. E, 74, 061104, doi:10.1103/PhysRevE.74.061104.

    • Search Google Scholar
    • Export Citation
  • Hosking, J. R. M., and J. R. Wallis, 1987: Parameter and quantile estimation for the generalized Pareto distribution. Technometrics, 29, 339349.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and S. Feng, 2001: A southward migration of centennial-scale variations of drought/flood in eastern China and the western United States. J. Climate, 14, 13231328.

    • Search Google Scholar
    • Export Citation
  • Hung, C.-W., and H.-H. Hsu, 2008: The first transition of the Asian summer monsoon, intraseasonal oscillation, and Taiwan mei-yu. J. Climate, 21, 15521568.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and D. R. Easterling, 1999: Climate extremes: Selected review and future research directions. Climatic Change, 42, 309325.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., R. W. Knight, and N. Plummer, 1995: Trends in high-frequency climate variability in the twentieth century. Nature, 337, 217220.

    • Search Google Scholar
    • Export Citation
  • Klein Tank, A. M. G., and G. P. Können, 2003: Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J. Climate, 16, 36653680.

    • Search Google Scholar
    • Export Citation
  • Klein Tank, A. M. G., and Coauthors, 2006: Changes in daily temperature and precipitation extremes in Central and South Asia. J. Geophys. Res., 111, D16105, doi:10.1029/2005JD006316.

    • Search Google Scholar
    • Export Citation
  • Lang, M., T. B. M. J. Ouarda, and B. Bobée, 1999: Towards operational guidelines for over-threshold modeling. J. Hydrol., 225, 103117.

    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Cai, and E. P. Campbell, 2005: Statistical modeling of extreme rainfall in southwest Western Australia. J. Climate, 18, 852863.

    • Search Google Scholar
    • Export Citation
  • Liu, B., M. Xu, M. Henderson, and Y. Qi, 2005: Observed trends of precipitation amount, frequency, and intensity in China, 1996–2000. J. Geophys. Res., 110, D08103, doi:10.1029/2004JD004864.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., Z. Sun, J. Wang, and J. Min, 2004: A modeling study of the effects of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon. Adv. Atmos. Sci., 21, 964975.

    • Search Google Scholar
    • Export Citation
  • Menon, S., J. Hansen, L. Nazarenko, and Y. F. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 22502253.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., and W. Murray, 1999: Workshop on indices and indicators for climate extremes: Asheville, NC, USA, 3-6 June 1997, breakout group B: Precipitation. Climatic Change, 24, 2329.

    • Search Google Scholar
    • Export Citation
  • Peterson, T., 2005: Climate change indices. WMO Bull., 54, 8386.

  • Qian, W. H., and X. Lin, 2005: Regional trends in recent precipitation indices in China. Meteor. Atmos. Phys., 90, 193207.

  • Qian, W. H., and A. Qin, 2007: Precipitation division and climate shift in China from 1960 to 2000. Theor. Appl. Climatol., 93, 117, doi:10.1007/s00704-007-0330-4.

    • Search Google Scholar
    • Export Citation
  • R Development Core Team, cited 2008: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [Available online at http://www.R-project.org.]

    • Search Google Scholar
    • Export Citation
  • Reeves, J., J. Chen, X. L. Wang, R. Lund, and Q. Lu, 2007: A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteor. Climatol., 46, 900915.

    • Search Google Scholar
    • Export Citation
  • Singh, V. P., and H. Guo, 1995: Parameter estimation for 3-parameter generalized Pareto distribution by the principle of maximum entropy (POME). Hydrol. Sci. J., 40, 165181.

    • Search Google Scholar
    • Export Citation
  • Smith, R. L., 1989: Extreme value analysis of environmental time series: An application to trend detection in ground-level ozone. Stat. Sci., 4, 367377.

    • Search Google Scholar
    • Export Citation
  • Su, B. D., T. Jiang, and W. B. Jin, 2006: Recent trends in observed temperature and precipitation extremes in the Yangtze River basin, China. Theor. Appl. Climatol., 83, 139151, doi:10.1007/s00704-005-0139-y.

    • Search Google Scholar
    • Export Citation
  • Su, B. D., M. Gemmer, and T. Jiang, 2007: Spatial and temporal variation of extreme precipitation over the Yangtze River basin. Quat. Int., 186, 2231, doi:10.1016/j.quaint.2007.09.001.

    • Search Google Scholar
    • Export Citation
  • Taqqu, M. S., V. Teverovsky, and W. Willinger, 1995: Estimators for long-range dependence: An empirical study. Fractals, 3, 785798.

  • Wang, B., Q. Bao, B. Hoskins, G. Wu, and Y. Liu, 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, doi:10.1029/2008GL034330.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., 2003: Comments on “Detection of undocumented changepoints: A revision of the two-phase regression model.” J. Climate, 16, 33833385.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., 2008a: Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test. J. Appl. Meteor. Climatol., 47, 24232444.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., 2008b: Penalized maximal F test for detecting undocumented mean shifts without trend change. J. Atmos. Oceanic Technol., 25, 368384.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., and Y. Feng, 2007: RHtestV2 user manual. Climate Research Division Atmosphere Science and Technology Branch, Environment Canada Toronto, ON, Canada, 20 pp. [Available online at http://cccma.seos.uvic.ca/ETCCDMI/software.shtml.]

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and L. Zhou, 2005: Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys. Res. Lett., 32, L09707, doi:10.1029/2005GL022574.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C.-H. Chang, Q. Xie, and D. Wang, 2007: Intraseasonal variability in the summer South China Sea: Wind jet, cold filament, and recirculations. J. Geophys. Res., 112, C10008, doi:10.1029/2007JC004238.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., 2001: Abrupt change of the mid-summer climate in central east China by the influence of atmospheric pollution. Atmos. Environ., 35, 50295040.

    • Search Google Scholar
    • Export Citation
  • Xue, Y. K., 1996: The impact of desertification in the Mongolian and the Inner Mongolian grassland on the regional climate. J. Climate, 9, 21732189.

    • Search Google Scholar
    • Export Citation
  • Yang, F., and K.-M. Lau, 2004: Trend and variability of China precipitation in spring and summer: Linkage to sea-surface temperatures. Int. J. Climatol., 24, 16251644.

    • Search Google Scholar
    • Export Citation
  • Yu, R., B. Wang, and T. Zhou, 2004: Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophys. Res. Lett., 31, L22212, doi:10.1029/2004GL021270.

    • Search Google Scholar
    • Export Citation
  • Zhai, P., A. Sun, F. Ren, X. Liu, B. Gao, and Q. Zhang, 1999: Changes of climate extremes in China. Climatic Change, 42, 203218.

  • Zhai, P., X. Zhang, H. Wan, and X. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 10961108.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., C.-Y. Xu, Z. Zhang, Y. D. Chen, and C.-L. Liu, 2008: Spatial and temporal variability of precipitation over China, 1951–2005. Theor. Appl. Climatol., 95, 5368, doi:10.1007/s00704-007-0375-4.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., F. W. Zwiers, and G. Li, 2004: Monte Carlo experiments on the detection of trends in extreme values. J. Climate, 17, 19451952.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., T. Li, and B. Wang, 2004: Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon. J. Climate, 17, 27802793.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 337 180 11
PDF Downloads 312 156 8

Characteristics and Changes of Extreme Precipitation in the Yellow–Huaihe and Yangtze–Huaihe Rivers Basins, China

View More View Less
  • 1 School of Atmospheric Sciences, Nanjing University, Nanjing, and National Meteorological Center, China Meteorological Administration, Beijing, China
  • | 2 School of Atmospheric Sciences, Nanjing University, Nanjing, China
Restricted access

Abstract

Many works suggest that the intensity of extreme precipitation might be changing under the background of global warming. Because of the importance of extreme precipitation in the Yellow–Huaihe and Yangtze–Huaihe River basins of China and to compare the spatial difference, the generalized Pareto distribution (GPD) function is used to fit the daily precipitation series in these basins and an estimate of the extreme precipitation spatial distribution is presented. At the same time, its long-term trends are estimated for the period between 1951 and 2004 by using a generalized linear model (GLM), which is based on GPD. High quality daily precipitation data from 215 observation stations over the area are used in this study. The statistical significance of the trend fields is tested with a Monte Carlo experiment based on a two-dimensional Hurst coefficient, H2.

The spatial distribution of the shape parameter of GPD indicates that the upper reaches of the Huaihe River (HuR) basin have the largest probability of extreme rainfall events, which is consistent with most historical flood records in this region. Spatial variations in extreme precipitation trends are found and show significant positive trends in the upper reaches of Poyang Lake in the Yangtze River (YaR) basin and a significant negative trend in the mid- to lower reaches of the Yellow River (YeR) and Haihe River (HaR) basins. The trends in the HuR basin and the lower reaches of Poyang Lake in the YaR basin are nearly neutral. All trend fields are significant at the 5% level of significance from the Monte Carlo experiments.

Corresponding author address: Xing Chen, School of Atmospheric Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu Province, China. E-mail: xchen@nju.edu.cn

Abstract

Many works suggest that the intensity of extreme precipitation might be changing under the background of global warming. Because of the importance of extreme precipitation in the Yellow–Huaihe and Yangtze–Huaihe River basins of China and to compare the spatial difference, the generalized Pareto distribution (GPD) function is used to fit the daily precipitation series in these basins and an estimate of the extreme precipitation spatial distribution is presented. At the same time, its long-term trends are estimated for the period between 1951 and 2004 by using a generalized linear model (GLM), which is based on GPD. High quality daily precipitation data from 215 observation stations over the area are used in this study. The statistical significance of the trend fields is tested with a Monte Carlo experiment based on a two-dimensional Hurst coefficient, H2.

The spatial distribution of the shape parameter of GPD indicates that the upper reaches of the Huaihe River (HuR) basin have the largest probability of extreme rainfall events, which is consistent with most historical flood records in this region. Spatial variations in extreme precipitation trends are found and show significant positive trends in the upper reaches of Poyang Lake in the Yangtze River (YaR) basin and a significant negative trend in the mid- to lower reaches of the Yellow River (YeR) and Haihe River (HaR) basins. The trends in the HuR basin and the lower reaches of Poyang Lake in the YaR basin are nearly neutral. All trend fields are significant at the 5% level of significance from the Monte Carlo experiments.

Corresponding author address: Xing Chen, School of Atmospheric Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu Province, China. E-mail: xchen@nju.edu.cn
Save